25 research outputs found

    Brain activation during processing of genuine facial emotion in depression: Preliminary findings

    No full text
    Objective The current study aimed to examine the neural correlates of processing genuine compared with posed emotional expressions, in depressed and healthy subjects using a novel functional magnetic resonance imaging (fMRI) paradigm Method During fMRI scanning, sixteen depressed patients and ten healthy controls performed an Emotion Categorisation Task, whereby participants were asked to distinguish between genuine and non-genuine (posed or neutral) facial displays of happiness and sadness. Results Compared to controls, the depressed group showed greater activation whilst processing genuine versus posed facial displays of sadness, in the left medial orbitofrontal cortex, caudate and putamen. The depressed group also showed greater activation whilst processing genuine facial displays of sadness relative to neutral displays, in the bilateral medial frontal/orbitofrontal cortex, left dorsolateral prefrontal cortex, right dorsal anterior cingulate, bilateral posterior cingulate, right superior parietal lobe, left lingual gyrus and cuneus. No differences were found between the two groups for happy facial displays. Limitations Relatively small sample sizes and due to the exploratory nature of the study, no correction was made for multiple comparisons. Conclusion The findings of this exploratory study suggest that depressed individuals may show a different pattern of brain activation in response to genuine versus posed facial displays of sadness, compared to healthy individuals. This may have important implications for future studies that wish to examine the neural correlates of facial emotion processing in depression

    Data from: Phylogenomic reconstruction of sportive lemurs (genus Lepilemur) recovered from mitogenomes with inferences for Madagascar biogeography

    No full text
    The family Lepilemuridae includes 26 species of sportive lemurs, most of which were recently described. The cryptic morphological differences confounded taxonomy until recent molecular studies; however, some species’ boundaries remain uncertain. To better understand the genus Lepilemur, we analyzed 35 complete mitochondrial genomes representing all recognized 26 sportive lemur taxa and estimated divergence dates. With our dataset we recovered 25 reciprocally monophyletic lineages, as well as an admixed clade containing Lepilemur mittermeieri and Lepilemur dorsalis. Using modern distribution data, an ancestral area reconstruction and an ecological vicariance analysis were performed to trace the history of diversification and to test biogeographic hypotheses. We estimated the initial split between the eastern and western Lepilemur clades to have occurred in the Miocene. Divergence of most species occurred from the Pliocene to the Pleistocene. The biogeographic patterns recovered in this study were better addressed with a combinatorial approach including climate, watersheds, and rivers. Generally, current climate and watershed hypotheses performed better for western and eastern clades, while speciation of northern clades was not adequately supported using the ecological factors incorporated in this study. Thus, multiple mechanisms likely contributed to the speciation and distribution patterns in Lepilemur
    corecore