252 research outputs found

    Marginal Fermi Liquid with a Two-Dimensional Patched Fermi Surface

    Full text link
    We consider a model composed of Landau quasiparticle states with patched Fermi surfaces (FS) sandwiched by states with flat FS to simulate the ``cold'' spot regions in cuprates. We calculate the one particle irreducible function and the self-energy up to two-loop order. Using renormalization group arguments we show that in the forward scattering channel the renormalized coupling constant is never infrared stable due to the flat FS sectors. Furthemore we show that the self-energy scales with energy as ReΣωlnω{\rm Re} \Sigma \sim \omega \ln \omega as ω0\omega \to 0, and thus the Fermi liquid state within each FS patch is turned into a marginal Fermi liquid.Comment: 5 pages, 3 ps figure

    Stellar cooling anomalies and variant axion models

    Full text link
    A number of observations of stellar systems show a mild preference for anomalously fast cooling compared with what predicted in the standard theory, which leads to a speculation that there exists an additional energy loss mechanism originated from the emission of axions in stars. We revisit the global analysis of the stellar cooling anomalies by adopting conservative assessments on several systematic uncertainties and find that the significance of the cooling hints becomes weaker but still indicates a non-vanishing axion-electron coupling at around 2.4σ\,\sigma. With the revised analysis results, we explore the possibility that such excessive energy losses are interpreted in the framework of variant axion models, which require two Higgs doublets and flavor-dependent Peccei-Quinn charge assignments. These models resolve two fundamental issues faced in the traditional KSVZ/DFSZ models by predicting a sizable axion coupling to electrons required to explain the cooling anomalies and at the same time providing a solution to the cosmological domain wall problem. We also find that a specific structure of the axion couplings to electrons and nucleons slightly relaxes the constraint from supernova 1987A and enlarges viable parameter regions compared with the DFSZ models. It is shown that good global fits to the observational data are obtained for axion mass ranges of 0.45meVma30meV0.45\,\mathrm{meV} \lesssim m_a \lesssim 30\,\mathrm{meV}, and that the predicted parameter regions can be probed in the forthcoming helioscope searches.Comment: 38 pages, 7 figures; revised version of the manuscript, accepted for publication in JCA

    Studies on the synthesis of Protein Analogus (PartVII)

    Get PDF

    Study of gravitational radiation from cosmic domain walls

    Full text link
    In this paper, following the previous study, we evaluate the spectrum of gravitational wave background generated by domain walls which are produced if some discrete symmetry is spontaneously broken in the early universe. We apply two different methods to calculate the gravitational wave spectrum: One is to calculate the gravitational wave spectrum directly from numerical simulations, and another is to calculate it indirectly by estimating the unequal time anisotropic stress power spectrum of the scalar field. Both analysises indicate that the slope of the spectrum changes at two characteristic frequencies corresponding to the Hubble radius at the decay of domain walls and the width of domain walls, and that the spectrum between these two characteristic frequencies becomes flat or slightly red tilted. The second method enables us to evaluate the GW spectrum semi-analytically for the frequencies which can not be resolved in the finite box lattice simulations, but relies on the assumptions for the unequal time correlations of the source.Comment: 17 pages, 9 figures; revised version of the manuscript, accepted for publication in JCA

    Evolution of String-Wall Networks and Axionic Domain Wall Problem

    Full text link
    We study the cosmological evolution of domain walls bounded by strings which arise naturally in axion models. If we introduce a bias in the potential, walls become metastable and finally disappear. We perform two dimensional lattice simulations of domain wall networks and estimate the decay rate of domain walls. By using the numerical results, we give a constraint for the bias parameter and the Peccei-Quinn scale. We also discuss the possibility to probe axion models by direct detection of gravitational waves produced by domain walls.Comment: 19 pages, 7 figures; revised version of the manuscript, accepted for publication in JCA

    TransCom N2O model inter-comparison - Part 2:Atmospheric inversion estimates of N2O emissions

    Get PDF
    This study examines N2O emission estimates from five different atmospheric inversion frameworks based on chemistry transport models (CTMs). The five frameworks differ in the choice of CTM, meteorological data, prior uncertainties and inversion method but use the same prior emissions and observation data set. The posterior modelled atmospheric N2O mole fractions are compared to observations to assess the performance of the inversions and to help diagnose problems in the modelled transport. Additionally, the mean emissions for 2006 to 2008 are compared in terms of the spatial distribution and seasonality. Overall, there is a good agreement among the inversions for the mean global total emission, which ranges from 16.1 to 18.7 TgN yr(-1) and is consistent with previous estimates. Ocean emissions represent between 31 and 38% of the global total compared to widely varying previous estimates of 24 to 38%. Emissions from the northern mid- to high latitudes are likely to be more important, with a consistent shift in emissions from the tropics and subtropics to the mid- to high latitudes in the Northern Hemisphere; the emission ratio for 0-30A degrees N to 30-90A degrees N ranges from 1.5 to 1.9 compared with 2.9 to 3.0 in previous estimates. The largest discrepancies across inversions are seen for the regions of South and East Asia and for tropical and South America owing to the poor observational constraint for these areas and to considerable differences in the modelled transport, especially inter-hemispheric exchange rates and tropical convective mixing. Estimates of the seasonal cycle in N2O emissions are also sensitive to errors in modelled stratosphere-to-troposphere transport in the tropics and southern extratropics. Overall, the results show a convergence in the global and regional emissions compared to previous independent studies
    corecore