36 research outputs found

    Photophysical and electronic properties of bismuth-perovskite shelled lead sulfide quantum dots

    Get PDF
    Metal halide perovskite shelled quantum dot solids have recently emerged as an interesting class of solution-processable materials that possess the desirable electronic properties of both quantum dots and perovskites. Recent reports have shown that lead sulfide quantum dots (PbS QDs) with perovskite ligand-shells can be successfully utilized in (opto)electronic devices such as solar cells, photoconductors, and field-effect transistors (FETs), a development attributed to the compatibility of lattice parameters between PbS and certain metal halide perovskites that results in the growth of the perovskite shell on the PbS QDs. Of several possible perovskite combinations used with PbS QDs, bismuth-based variants have been shown to have the lowest lattice mismatch and to display excellent performance in photoconductors. However, they also display photoluminescence (PL), which is highly sensitive to surface defects. In this work, we present an investigation of the transport and optical properties of two types of bismuth-based perovskite (MA(3)BiI(6) and MA(3)Bi(2)I(9)) shelled PbS QDs. Our photophysical study using temperature-dependent PL spectroscopy between 5 and 290 K indicates that the PL efficiency of the reference oleic acid (OA) capped samples is much higher than that of the Bi-shelled ones, which suffer from traps, most likely formed at their surfaces during the phase-transfer ligand exchange process. Nevertheless, the results from electrical measurements on FETs show the successful removal of the native-OA ligands, displaying electron dominated transport with modest mobilities of around 10(-3) cm(2) [V s](-1) - comparable to the reported values for epitaxial Pb-based shelled samples. These findings advance our understanding of perovskite shelled QD-solids and point to the utility of these Bi-based variants as contenders for photovoltaic and other optoelectronic applications. Published under license by AIP Publishing

    Broadening of Distribution of Trap States in PbS Quantum Dot Field-Effect Transistors with High-k Dielectrics

    Get PDF
    We perform a quantitative analysis of the trap density of states (trap DOS) in PbS quantum dot field-effect transistors (QD-FETs), which utilize several polymer gate insulators with a wide range of dielectric constants. With increasing gate dielectric constant, we observe increasing trap DOS close to the lowest unoccupied molecular orbital (LUMO) of the QDs. In addition, this increase is also consistently followed by broadening of the trap DOS. We rationalize that the increase and broadening of the spectral trap distribution originate from dipolar disorder as well as polaronic interactions, which are appearing at strong dielectric polarization. Interestingly, the increased polaron-induced traps do not show any negative effect on the charge carrier mobility in our QD devices at the highest applied gate voltage, giving the possibility to fabricate efficient low-voltage QD devices without suppressing carrier transport

    Enhanced near-infrared response of nano- and microstructured silicon/organic hybrid photodetectors

    Get PDF
    Heterojunctions between an organic semiconductor and silicon are an attractive route to extending the response of silicon photodiodes into the near infrared (NIR) range, up to 2000 nm. Silicon-based alternatives are of interest to replace expensive low band-gap materials, like InGaAs, in telecommunications and imaging applications. Herein, we report on the significant enhancement in NIR photodetector performance afforded by nano- and microstructuring of p-doped silicon (p-Si) prior to deposition of a layer of the organic semiconductor Tyrian Purple (TyP). We show how different silicon structuring techniques, namely, electrochemically grown porous Si, metal-assisted chemical etching, and finally micropyramids produced by anisotropic chemical etching (Si ÎŒP), are effective in increasing the NIR responsivity of p-Si/TyP heterojunction diodes. In all cases, the structured interfaces were found to give photodiodes with superior characteristics as compared with planar interface devices, providing up to 100-fold improvement in short-circuit photocurrent, corresponding with responsivity values of 1–5  mA/W in the range of 1.3–1.6 Όm. Our measurements show this increased performance is neither correlated to optical effects, i.e., light trapping, nor simply to geometric surface area increase by micro- and nanostructuring. We conclude that the performance enhancement afforded by the structured p-Si/organic diodes is caused by a yet unresolved mechanism, possibly related to electric field enhancement near the sharp tips of the structured substrate. The observed responsivity of these devices places them closer to parity with other, well-established, Si-based NIR detection technologies

    Epitaxial Metal Halide Perovskites by Inkjet‐Printing on Various Substrates

    Get PDF
    Metal‐halide‐perovskites revolutionized the field of thin‐film semiconductor technology, due to their favorable optoelectronic properties and facile solution processing. Further improvements of perovskite thin‐film devices require structural coherence on the atomic scale. Such perfection is achieved by epitaxial growth, a method that is based on the use of high‐end deposition chambers. Here epitaxial growth is enabled via a ≈1000 times cheaper device, a single nozzle inkjet printer. By printing, single‐crystal micro‐ and nanostructure arrays and crystalline coherent thin films are obtained on selected substrates. The hetero‐epitaxial structures of methylammonium PbBr3 grown on lattice matching substrates exhibit similar luminescence as bulk single crystals, but the crystals phase transitions are shifted to lower temperatures, indicating a structural stabilization due to interfacial lattice anchoring by the substrates. Thus, the inkjet‐printing of metal‐halide perovskites provides improved material characteristics in a highly economical way, as a future cheap competitor to the high‐end semiconductor growth technologies.DFG, 404984854, Bleifreie Perovksite fĂŒr die RöntgendetektionDFG, 399073171, GRK 2495: Energiekonvertierungssysteme: von Materialien zu Bauteile

    New tendencies of sustainable development: providing personal security and quality of life as a new national security paradigm

    No full text
    The article is devoted to the analysis of the theoretical foundations of public administration and administration in the field of public security and civil defense as a component of the national security system. Consideration of the problems of civilizational development and national security shows the urgent need to rethink the areas of responsibility of state and civil society, the ratio of hierarchical and network structures in public administration and management. There is also a need to implement a new principle of boosting standards of living, as a prerequisite to ensuring national security, through sustainable development of society and competitiveness of the state itself. It is shown that under the conditions of globalization the state is no longer ensuring security and well-being of its citizens by mere «defending» them from the threats of emergencies. The state must prepare citizens to be able to confront the various globalization-related challenges on their own. Earlier this year, the National Security and Defense Council of Ukraine submitted a draft national security strategy “Personal Security – National Security” to the President for consideration. In this regard the new model of public administration and administration system in the field of public security and civil defense can be efficient. It is based on the six pillars of public administration. These are «human being / human resource», «organization theory», «policy analysis», «budgeting», «statistics» and «ethics». Such a framework ensures the unity of the system development approach in combination with theory and practice

    Tuning the Localized Surface Plasmon Resonance in Cu2-xSe Nanocrystals by Postsynthetic Ligand Exchange

    No full text
    Nanoparticles exhibiting localized surface plasmon resonances (LSPR) are valuable tools traditionally used in a wide field of applications including sensing, imaging, biodiagnostics and medical therapy. Plasmonics in semiconductor nanocrystals is of special interest because of the tunability of the carrier densities in semiconductors, and the possibility to couple the plasmonic resonances to quantum confined excitonic transitions. Here, colloidal Cu2-xSe nanocrystals were synthesized, whose composition was shown by Rutherford backscattering analysis and electron dispersive X-ray spectroscopy, to exhibit Cu deficiency. The latter results in p-type doping causing LSPRs, in the present case around a wavelength of 1100 nm, closely matching the indirect band gap of Cu2-xSe. By partial exchange of the organic ligands to specific electron trapping or donating species the LSPR is fine-tuned to exhibit blue or red shifts, in total up to 200 nm. This tuning not only provides a convenient tool for post synthetic adjustments of LSPRs to specific target wavelength but the sensitive dependence of the resonance wavelength on surface charges makes these nanocrystals also interesting for sensing applications, to detect analytes dressed by functional groups

    General Observation of Photocatalytic Oxygen Reduction to Hydrogen Peroxide by Organic Semiconductor Thin Films and Colloidal Crystals

    No full text
    Low-cost semiconductor photocatalysts offer unique possibilities for industrial chemical transformations and energy conversion applications. We report that a range of organic semiconductors are capable of efficient photocatalytic oxygen reduction to H2O2 in aqueous conditions. These semiconductors, in the form of thin films, support a 2-electron/2-proton redox cycle involving photoreduction of dissolved O-2 to H2O2, with the concurrent photooxidation of organic substrates: formate, oxalate, and phenol. Photochemical oxygen reduction is observed in a pH range from 2 to 12. In cases where valence band energy of the semiconductor is energetically high, autoxidation competes with oxidation of the donors, and thus turnover numbers are low. Materials with deeper valence band energies afford higher stability and also oxidation of H2O to O-2. We found increased H2O2 evolution rate for surfactant-stabilized nanoparticles versus planar thin films. These results evidence that photochemical O-2 reduction may be a widespread feature of organic semiconductors, and open potential avenues for organic semiconductors for catalytic applications.Funding Agencies|Wallenberg Center for Molecular Medicine at Linkoping University; "Aufbruch Bayern" initiative of the state of Bavaria</p

    Tunable doping in PbS nanocrystal field-effect transistors using surface molecular dipoles

    Get PDF
    We study the effect of self-assembled monolayer (SAM) treatment of the SiO2 dielectric on the electrical characteristics of PbS transistors. Using SAMs, we observe threshold voltage shifts in the electron transport, allowing us to tune the electrical properties of the devices depending on the SAM molecule used. Moreover, the use of a specific SAM improves the charge carrier mobility in the devices by a factor of three, which is attributed to the reduced interface traps due to passivated silanol on the SiO2 surface. These reduced traps confirm that the voltage shifts are not caused by the trap states induced by the SAMs. (C) 2016 Author(s)
    corecore