62 research outputs found

    A Randomized, Double-blind, Placebo-controlled Study of the Safety and Efficacy of Lessertia frutescens (L.) Goldblatt and J.C. Manning (syn. Sutherlandia frutescens (L.) R. Br.) in HIV-infected South Africans : Protocol

    Get PDF
    Protocol Number: TICIPS002_RP01NIH: National Center for Complementary and Alternative MedicinesFogarty International CenterSponsor: National Center for Complementary and Alternative Medicine National Institutes of Health (http://nccam.nih.gov)On July 9, 2015, the file was updated from the 2009-12 version to Version 7.5 (Protocol Revision Date April 05, 2010)

    An assessment of asthmatic patients at four Western Cape community pharmacies

    Get PDF
    Objectives. To identify the profile of asthmatic patients visiting community pharmacies and to assess the appropriateness of their current asthma therapy.Design. Patients were identified as either chronic, newly diagnosed or undiagnosed. Asthma status was assessed from their current symptom and medication profiles and from performance in an airways responsiveness test. Reversibility of > 15% was suggestive of probable airflow obstruction and such patients were referred to a medical practitioner.Setting. Four community pharmacies located in different socio-economic areas, viz. Khayelitsha, Wynberg, Mitchell's Plain and Vrijzee, were selected.Subjects. Participants over the age of 6 years, who suffered from recurrent cough, wheeze, chest tightness and/or breathlessness and used over-the-counter (OTC) and/or asthma medications, completed a questionnaire and participated in the airways responsiveness test. Outcome measures. Effective control of asthma based on minimal symptoms, appropriate use of bronchodilator and anti-inflammatory therapies and absence of airflow obstruction.Results. Of the 220 participants, 120 were identified as chronic, 7 as newly diagnosed and 93 as undiagnosed. Chronic asthmatics suffered daily symptoms and used inadequate prophylactic anti-inflammatory therapy. Many undiagnosed asthmatics were unaware of their symptoms and took OTC medication indiscriminately. Based on peak expiratory flow rate measurements, > 50% of the screened patients displayed a reversibility of > 15%.Conclusions. Chronic and many undiagnosed asthmatic patients frequent community pharmacies for their medication. Such patients suffer recurrent asthma symptoms and use medication inappropriately, which results in suboptimal lung function. Pharmacists should play a more participatory role in the detection andmanagement of asthma in the community

    Hydrogen Epoch of Reionization Array (HERA)

    Get PDF
    The Hydrogen Epoch of Reionization Array (HERA) is a staged experiment to measure 21 cm emission from the primordial intergalactic medium (IGM) throughout cosmic reionization (z=6−12z=6-12), and to explore earlier epochs of our Cosmic Dawn (z∼30z\sim30). During these epochs, early stars and black holes heated and ionized the IGM, introducing fluctuations in 21 cm emission. HERA is designed to characterize the evolution of the 21 cm power spectrum to constrain the timing and morphology of reionization, the properties of the first galaxies, the evolution of large-scale structure, and the early sources of heating. The full HERA instrument will be a 350-element interferometer in South Africa consisting of 14-m parabolic dishes observing from 50 to 250 MHz. Currently, 19 dishes have been deployed on site and the next 18 are under construction. HERA has been designated as an SKA Precursor instrument. In this paper, we summarize HERA's scientific context and provide forecasts for its key science results. After reviewing the current state of the art in foreground mitigation, we use the delay-spectrum technique to motivate high-level performance requirements for the HERA instrument. Next, we present the HERA instrument design, along with the subsystem specifications that ensure that HERA meets its performance requirements. Finally, we summarize the schedule and status of the project. We conclude by suggesting that, given the realities of foreground contamination, current-generation 21 cm instruments are approaching their sensitivity limits. HERA is designed to bring both the sensitivity and the precision to deliver its primary science on the basis of proven foreground filtering techniques, while developing new subtraction techniques to unlock new capabilities. The result will be a major step toward realizing the widely recognized scientific potential of 21 cm cosmology.Comment: 26 pages, 24 figures, 2 table

    Measuring HERA's Primary Beam in Situ: Methodology and First Results

    Get PDF
    The central challenge in 21 cm cosmology is isolating the cosmological signal from bright foregrounds. Many separation techniques rely on the accurate knowledge of the sky and the instrumental response, including the antenna primary beam. For drift-scan telescopes, such as the Hydrogen Epoch of Reionization Array (HERA), that do not move, primary beam characterization is particularly challenging because standard beam-calibration routines do not apply (Cornwell et al.) and current techniques require accurate source catalogs at the telescope resolution. We present an extension of the method from Pober et al. where they use beam symmetries to create a network of overlapping source tracks that break the degeneracy between source flux density and beam response and allow their simultaneous estimation. We fit the beam response of our instrument using early HERA observations and find that our results agree well with electromagnetic simulations down to a -20 dB level in power relative to peak gain for sources with high signal-to-noise ratio. In addition, we construct a source catalog with 90 sources down to a flux density of 1.4 Jy at 151 MHz.The central challenge in 21 cm cosmology is isolating the cosmological signal from bright foregrounds. Many separation techniques rely on the accurate knowledge of the sky and the instrumental response, including the antenna primary beam. For drift-scan telescopes, such as the Hydrogen Epoch of Reionization Array (HERA), that do not move, primary beam characterization is particularly challenging because standard beam-calibration routines do not apply (Cornwell et al.) and current techniques require accurate source catalogs at the telescope resolution. We present an extension of the method from Pober et al. where they use beam symmetries to create a network of overlapping source tracks that break the degeneracy between source flux density and beam response and allow their simultaneous estimation. We fit the beam response of our instrument using early HERA observations and find that our results agree well with electromagnetic simulations down to a -20 dB level in power relative to peak gain for sources with high signal-to-noise ratio. In addition, we construct a source catalog with 90 sources down to a flux density of 1.4 Jy at 151 MHz

    Optimizing sparse RFI prediction using deep learning

    Get PDF
    Radio frequency interference (RFI) is an ever-present limiting factor among radio telescopes even in the most remote observing locations. When looking to retain the maximum amount of sensitivity and reduce contamination for Epoch of Reionization studies, the identification and removal of RFI is especially important. In addition to improved RFI identification, we must also take into account computational efficiency of the RFI-Identification algorithm as radio interferometer arrays such as the Hydrogen Epoch of Reionization Array (HERA) grow larger in number of receivers. To address this, we present a deep fully convolutional neural network (DFCN) that is comprehensive in its use of interferometric data, where both amplitude and phase information are used jointly for identifying RFI. We train the network using simulated HERA visibilities containing mock RFI, yielding a known \u2018ground truth\u2019 data set for evaluating the accuracy of various RFI algorithms. Evaluation of the DFCN model is performed on observations from the 67 dish build-out, HERA-67, and achieves a data throughput of 1.6 7 105 HERA time-ordered 1024 channelled visibilities per hour per GPU. We determine that relative to an amplitude only network including visibility phase adds important adjacent time\u2013frequency context which increases discrimination between RFI and non-RFI. The inclusion of phase when predicting achieves a recall of 0.81, precision of 0.58, and F2 score of 0.75 as applied to our HERA-67 observations

    A Real Time Processing system for big data in astronomy: Applications to HERA

    Get PDF
    As current- and next-generation astronomical instruments come online, they will generate an unprecedented deluge of data. Analyzing these data in real time presents unique conceptual and computational challenges, and their long-term storage and archiving is scientifically essential for generating reliable, reproducible results. We present here the real-time processing (RTP) system for the Hydrogen Epoch of Reionization Array (HERA), a radio interferometer endeavoring to provide the first detection of the highly redshifted 21 cm signal from Cosmic Dawn and the Epoch of Reionization by an interferometer. The RTP system consists of analysis routines run on raw data shortly after they are acquired, such as calibration and detection of radio-frequency interference (RFI) events. RTP works closely with the Librarian, the HERA data storage and transfer manager which automatically ingests data and transfers copies to other clusters for post-processing analysis. Both the RTP system and the Librarian are public and open source software, which allows for them to be modified for use in other scientific collaborations. When fully constructed, HERA is projected to generate over 50 terabytes (TB) of data each night, and the RTP system enables the successful scientific analysis of these data

    Methods of Error Estimation for Delay Power Spectra in 21 cm Cosmology

    Get PDF
    Precise measurements of the 21 cm power spectrum are crucial for understanding the physical processes of hydrogen reionization. Currently, this probe is being pursued by low-frequency radio interferometer arrays. As these experiments come closer to making a first detection of the signal, error estimation will play an increasingly important role in setting robust measurements. Using the delay power spectrum approach, we have produced a critical examination of different ways that one can estimate error bars on the power spectrum. We do this through a synthesis of analytic work, simulations of toy models, and tests on small amounts of real data. We find that, although computed independently, the different error bar methodologies are in good agreement with each other in the noise-dominated regime of the power spectrum. For our preferred methodology, the predicted probability distribution function is consistent with the empirical noise power distributions from both simulated and real data. This diagnosis is mainly in support of the forthcoming HERA upper limit and also is expected to be more generally applicable
    • …
    corecore