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ABSTRACT
Radio frequency interference (RFI) is an ever-present limiting factor among radio telescopes
even in the most remote observing locations. When looking to retain the maximum amount
of sensitivity and reduce contamination for Epoch of Reionization studies, the identification
and removal of RFI is especially important. In addition to improved RFI identification, we
must also take into account computational efficiency of the RFI-Identification algorithm as
radio interferometer arrays such as the Hydrogen Epoch of Reionization Array (HERA)
grow larger in number of receivers. To address this, we present a deep fully convolutional
neural network (DFCN) that is comprehensive in its use of interferometric data, where both
amplitude and phase information are used jointly for identifying RFI. We train the network
using simulated HERA visibilities containing mock RFI, yielding a known ‘ground truth’
data set for evaluating the accuracy of various RFI algorithms. Evaluation of the DFCN
model is performed on observations from the 67 dish build-out, HERA-67, and achieves a
data throughput of 1.6 × 105 HERA time-ordered 1024 channelled visibilities per hour per
GPU. We determine that relative to an amplitude only network including visibility phase adds
important adjacent time–frequency context which increases discrimination between RFI and
non-RFI. The inclusion of phase when predicting achieves a recall of 0.81, precision of 0.58,
and F2 score of 0.75 as applied to our HERA-67 observations.
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1 IN T RO D U C T I O N

Next generation radio interferometers are now beginning to become
operational. These arrays are looking to detect and measure some
of the weakest signals the Universe has to offer, such as the
brightness-temperature contrast of the 21cm signal during the Epoch
of Reionization (EoR). By measuring this highly redshifted signal
we can characterize the progression of the EoR. The understanding
gained from this characterization has the potential to help us
unravel how the first stars and galaxies formed and reionized
their surrounding neutral hydrogen. While instruments like the
Hydrogen Epoch of Reionization Array (HERA, DeBoer et al.
2017) have the intrinsic sensitivity required to detect the EoR signal
through a power spectrum, they are afflicted with anthropogenic
noise which we refer to as radio frequency interference (RFI).
Interference from RFI in 21cm EoR observations is an especially
significant obstacle because it can have a brightness anywhere from
on the order of the EoR signal to orders of magnitude beyond
even Galactic and extragalactic foregrounds. RFI unfortunately
introduces a reduction in sensitivity in two separate but distinct
ways, one being the direct contamination by having similar spectral
characteristics and overpowering of the 21cm signal, and the other
being the introduction of a complex sampling function due to
missing data. This produces correlations between modes when
computing the Fourier transform along the frequency axis (Offringa,
Mertens & Koopmans 2019). It is therefore important to strike
a balance between identifying RFI while not falsely identifying
non-RFI as RFI, which leads to further complicating our sampling
function over frequency. Many approaches have recently been
developed to identify and extract RFI from radio telescope data. RFI
algorithms of particular interest include AOflagger (Offringa, van
de Gronde & Roerdink 2012), which uses a Scale-invariant Rank
operator to identify morphologies that are scale-invariant in time or
frequency which is a characteristic of many RFI signals. This RFI
detection strategy has been used successfully on instruments such
as the Murchison Widefield Array (MWA) (Offringa et al. 2015)
and the Low-Frequency Array (Offringa et al. 2013). Alternative
approaches to RFI identification include the application of neural
networks. More specifically, a deep fully convolutional neural
network (DFCN) based on the U-Net architecture (Ronneberger,
Fischer & Brox 2015) has been used on single-dish radio telescope
data (Akeret et al. 2017), and a recurrent neural network (RNN) has
been applied to signal amplitudes from radio interferometer data
(Burd et al. 2018).

In this paper, we expand upon the RFI identification approach
using a DFCN developed in TENSORFLOW (Abadi et al. 2016).
DFCNs have seen a growing trend of use (Long, Shelhamer &
Darrell 2014; Ronneberger, Fischer & Brox 2015; Akeret et al. 2017;
Fu et al. 2017; Chen et al. 2018; Guha Roy et al. 2018) for semantic
segmentation in images and provide a good starting point for our use
in identifying RFI. For our RFI DFCN application, we use both the
amplitude and phase information from an interferometric visibility.
This technique is prompted by examples such as what is shown in
Fig. 1, which demonstrates how the phase of time-ordered visibili-
ties (waterfall visibilities) can provide supplemental information in
identifying RFI beyond that of an amplitude-only approach. Note
that in this paper, all time-ordered visibility plots of real data are
in the yellow–purple palette (e.g. Fig. 1) whereas all simulated
data are in the blue–white palette (e.g. Fig. 8). To understand the
improvements afforded by our joint amplitude–phase network, we
compare it to both an amplitude only network and the Watershed

Figure 1. An example of a HERA 14 m baseline waterfall visibility between
170 and 195 MHz in amplitude (left) and phase (right). The phase waterfall
visibility demonstrates how it can provide complementary information about
the presence of RFI such as in the 181.3 MHz channel which has constant
narrow-band RFI and the more spontaneous ‘blips’ in the 179.5 MHz channel
at time integrations of 13, 22, and 23. The significant contrast between the
phase of the sky fringe, and how it is restricted to a narrow band is an obvious
indication of being RFI.

RFI algorithm (See Appendix A) which is the current RFI-flagging
algorithm of choice for the HERA data processing pipeline.

The paper is outlined as follows. Section 2 introduces the
architecture of our network, discusses how it compares to previous
work, and describes the training data set. We then demonstrate
the effectiveness by evaluating both DFCNs on simulated and real
HERA observations in Section 3. Finally, in Section 4, we conclude
with discussion of further applications and future work.

2 ME T H O D

2.1 DFCN architecture

The standard 2D convolutional neural network (CNN, LeCun &
Bengio 1998) is structurally similar to that of a typical artificial
neural network (ANN, Lecun et al. 1998), but it differs to an ANN’s
dense layers of ‘neurons’ by its successive convolutions of an input
image, which preserves spatial dependence. Each convolutional
layer contains a set of learn-able filters which represent a response
for particular shapes at different scales (e.g. the edges of an object
in an image). The convolved output for every layer is then typically
downsampled using a process known as max pooling that strides a
window across the image keeping the highest pixel value within the
window. Max pooling provides both a computational improvement
due to a decreased image size, and an added level of abstraction
relative to the initial image. After the convolution and max pooling
layers, the image typically is then passed through a non-linear
activation function (e.g. sigmoid function) which produces a spatial
activation map describing the convolutional layer’s response to
every pixel contained within the image. The eventual output of these
successive convolution, max pooling, and activation layers is then
used to predict (or regress) based on the classification of the image.
The error between the predicted class and the true class is then
computed through a loss function such as the cross-entropy loss (or
mean-squared error for regression) and the error is back-propagated
through the network updating the learn-able parameters.
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Sparse RFI prediction using FCNs 2607

Figure 2. The general architecture for the amplitude–phase DFCN demonstrating the sliced in frequency, padded in both time and frequency, and finally
normalized amplitude and phase input layers. H and W correspond to the input visibility dimensions in time and frequency, while F is the number of feature
(filter) layers with L corresponding to the total number of layers between input and the fully convolutional layer. For reasons explained in Section 2.2, we use
layer normalization at each skip connection and concatenation due to the difference in distributions of the amplitude and phase downsampling pathways. Every
convolutional layer in the downsampling pathway is a three times stacked set of convolutional layers with 3 × 3 kernels leading into an output convolutional
layer with a 1 × 1 kernel, similar to the ‘Network in Network’ architecture of Lin et al. (2013). All convolutional layers including the final output layer use the
Leaky ReLU as their activation function.

The style of network we describe in this paper deviates from
a traditional CNN by being developed as a multi-input/output
fully CNN, where the number of inputs is equal to outputs. For
a deeper understanding of this kind of network architecture, see
Krizhevsky, Sutskever & Hinton (2017). We begin with a deep
fully convolutional network architecture similar to the U-Net RFI
(Ronneberger et al. 2015; Akeret et al. 2017) implementation.
However,instead of using a uniform number of feature layers per
convolutional layer we increase the feature layers as you get deeper
into the network based on the minimum number of feature layers
needed for the initial convolutional layer. This approach offers
a decrease in computational time as the number of convolutions
is reduced for the largest image inputs. Some caution should be
taken here as a reduced number of feature layers for the input
convolutional layers could cause prediction performance to suffer
as the neural network may be incapable of capturing important
structure in the input images due to underfitting. This initial layer
feature size is another hyperparameter that needs to be tuned where
the fewest number of layers required to model our data is optimal.
All convolutional layers in our neural network consist of several
stacked layers which due to their respective max pooling stage gives
the output dimensions of ( H

2L × W

2L × 2LF ) where F is the number
of feature layers, H and W are the layer height and width in pixels,
and L is the layer of interest. Every output for each stacked layer
contains a 1x1 convolutional layer with a Leaky ReLU activation
function which is analogous to the ‘Network in Network’ introduced
in Lin, Chen & Yan (2013). By introducing 1x1 convolutions with
non-linearities to each output we yield a per-pixel discrimination
independent of neighbouring pixels which increases the network’s
ability to model higher level abstractions. This is important because
abstractions of our data are typically invariant to initial changes

(Bengio, Courville & Vincent 2012) thus having the potential for
more robust predictive power.

To adapt the network to use the visibility phase component,
we mirror the amplitude only network as shown in Fig. 2. We
then combine successive amplitude and phase convolution layers
at each transpose convolution layer with the technique known as
‘skip connections’ introduced in Long et al. (2014) and He et al.
(2016). This is implemented by taking the output of a downsam-
pled convolutional layer and concatenating it with an upsampled
transpose convolutional layer of equal time, frequency, and feature
dimensions. By using these skips in the convolutional pathway,
the network is provided with a ‘template’ from which to make
small deviations. More simply speaking, the skip connections re-
introduce higher resolution information that may have become lost
due to the successive convolution and pooling operations that further
remove the network’s ability to relate higher order abstraction to
our raw input images. This fixes an issue within deep networks
where fits to non-linearities become dominant in a layer, leading
to training and overfitting issues. Empirically, we find that using
skip connections in conjunction with phase information allows
for training a deeper network that converges in fewer iterations
than the simple amplitude-only network. This effect is most likely
due to the fact that while our amplitude and phase visibilities are
broadly dissimilar the one aspect where they can agree is where
RFI exists. Layers deeper into our network rely on more abstract
features and by stacking these skip connections from amplitude and
phase pathways, activations due to RFI present in pixels strengthens
inferences at later layers.

For each of the skip layer concatenations between the amplitude
and phase pathways, we subtract the mean and normalize over both
time and frequency, which assists in standardization as amplitude
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Table 1. Architecture overview of the DFCNs demonstrated in this anal-
ysis. The coloured rows correspond to the concatenations on the outputs
between those respective layers, where prior to the concatenation each layer
undergoes a batch normalization. The depth of a layer here means that
there are multiples of the layer stacked all having the same properties. The
amplitude–phase DFCN has two input pathways mirrored up until the first
transpose convolution layer.

and phase features can be quite disparate. The amplitude only DFCN
we use has ∼ 6 × 105 trainable parameters, while the addition
of the phase downsampling layers for the amplitude and phase
DFCN pushes the number of trainable parameters to ∼9 × 105. The
specific per layer attributes employed in our networks can be seen
in Table 1, where it should be noted that per layer dimension sizes
are not specified because this style of network is agnostic to the
input height and width. Additionally, all convolutional layers are
zero padded so that input height and width dimensions are equal
to the output which helps with reducing the minimum allowable
dynamic input image size.

To optimize the network hyperparameters, a coarse grid search
was performed over activation function, dropout rate, learning rate,
and batch size; the optimal results from this search are found in
Table 2. The depths of our convolutional layers are chosen to
maximize learning and minimize prediction times, while trying to
retain abstractions of the input visibilities that can properly describe
our RFI. These dimensions are thus determined by initially training
at an arbitrarily high number of feature layers and scaling back to
the minimum number of layers we need to retain for convergence
of the training loss.

2.2 Data preparation

The analysis in this paper is performed entirely on HERA data
(both simulated and real) with PYUVDATA (Hazelton et al. 2017)
used for data handling and therefore should be noted that any data
preparation techniques outlined here may be unique to HERA.
This does not imply that they are unsuitable for other radio

Table 2. Parameters and network architecture features that were determined
by grid-search cross-validation which included the activation function but
not the loss function. The dropout rate is uniform across all nodes as
highlighted in Fig. 2.

Parameter Values

Batch size 256
Optimizer ADAMa

Learning rate 0.003
Activation function Leaky Rectified Linear Unitb

Dropout rate 0.7
Loss function Cross entropy

Notes: aKingma & Ba (2014).
bMaas, Hannun & Ng (2013).

interferometers but additional precautions may need to be taken
into consideration. To prepare the amplitude–phase input space to
be as robust to as many visibility scenarios as possible, we must
adopt several standardizations. The amplitude of the visibility can
vary drastically by local sidereal time (LST), day, and baseline type
while having significant differences in dynamic range. In contrast,
the phase of a visibility is intrinsically more standardized: it is
constrained between −π ≤ φ ≤ π and should have a mean that
is approximately μφ = 0, so we should only expect substantial
deviations across baseline type, which are due to changing fringe
rates. Therefore to lessen the dynamic range issues in amplitude,
we standardize our waterfall visibilities V(t, ν), according to
V̂ (t, ν) = (ln|V | − μln|V |)/σln|V |, by subtracting the mean, μln|V|,
and dividing by the standard deviation, σln|V|, across time and
frequency of the logarithmic visibilities.

To further increase the robustness and generalizability of our
network for different time and frequency sub-bands, we slice the
HERA visibilities into 16 spectral windows of dimensions 64
frequency channels by 60 time integrations (6.3 MHz × 600 s).
We then pad both time and frequency dimensions by reflecting
about the boundaries, extending the data set in both directions. This
allows for making predictions for the edge pixels, which otherwise
would be ignored due to the size of our convolution layer kernel size
of 3 × 3 (98.44 kHz × 30 s). Furthermore, we want to use square
input channels to maintain a 1:1 aspect of time to frequency pixels.
These considerations inform the decision to use a size of 68 × 68
for our input waterfall visibility.

Combined with our training batch size, N, of 256, for our
amplitude–phase DFCN, this gives us an input training space of
size N × H × W × C = (256 × 68 × 68 × 2), where C is the
number of input channels (e.g. C0, C1 = V̂ (t, ν), φ(t, ν)).

2.3 Training data set

The training data set was composed of simulated HERA visibilities
using the simulator, hera sim. .1

This simulator creates visibilities according to a ‘pseudo-sky’,
which means that modelled point sources have no relationship, in
either time or frequency, to any real extragalactic source on the sky
(e.g. Fornax A). Extragalactic point sources are modelled using the
discrete form of the visibility equation

Ṽ (t, ν) =
∑

n

[
Ã(τ, ŝ) ∗ S̃n(τ ) ∗ δ(τn − τ )

]
(1)

1https://github.com/HERA-Team/hera sim
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(Parsons et al. 2012) which depends upon the source delay position
on the sky, τ , the source spectrum, Sn(ν), and the delay-dependent
interferometer gains, Ã(τ, ŝ), where a tilde represents the Fourier
transform converting between frequency ν and delay τ , and ∗
represents a convolution. Point source flux densities are drawn from
a power-law distribution of the form Pr(S > S0.3 Jy) = ( S

S0.3 Jy
)−1.5

with a lower bound of 0.3 Jy. The spectral indices for these sources
are then assigned uniformly at random between −1 ≤ αr ≤ − 1

2 as
per Hurley-Walker et al. (2017), where Sν ∝ ( ν

νcentre
)αr . The source

delays (sky positions) are also chosen according to a uniform
random distribution. Each simulated waterfall visibility contains
between 103 ≤ Nsrcs ≤ 104 sources with the aforementioned
characteristics. We simulate diffuse galactic emissions with the
de Oliveira-Costa et al. (2008) Global Sky Model (GSM) and an
analytic form of the HERA primary beam (Parsons 2015). GSM
diffuse emissions are not precisely modelled but created to give
a sky-like realization by sampling across LST and frequency, and
applying a filter in time that has a fringe-rate corresponding to
the baseline type being simulated. The visibility baseline types
are uniformly sampled across LST, where baseline length, |b|, is
chosen according to a half-normal distribution with μ|b| = 7.5 λ

and σ|b| = 150 λ. This is done to closely resemble the distribution
of baseline lengths seen in HERA which is weighted towards short
baselines. The learned model can be further tuned as longer baseline
types are introduced.

We model RFI with four distinct classes: narrow-band persistent
(e.g. ORBCOMM), narrow-band burst (e.g. ground/air commu-
nications), broad-band burst (e.g. lightning), and random single
time–frequency ‘blips’. Narrow-band persistent constitutes the
majority of RFI and are most often the brightest sources in HERA
observations; these are empirically modelled. Narrow-band bursts
have no preference in duration or frequency but typically persist >

30 s and are simulated with a Gaussian profile in time to mimic
the roll on/off seen in HERA observations. Broad-band bursts are
rare events that exist across the entire HERA band at specific time
integrations. These events are introduced in only 3 per cent of the
training data. We randomly inject ‘blips’ that are RFI with a duration
of 
t ≤ 10 s and frequency width, 
ν ≤ 100 kHz, which when
taking into account HERA’s time and frequency resolution places
this class of RFI into single visibility pixels.

To create the most comprehensive HERA visibility simulations
to mimic real observations we include simplistic models of several
important effects seen in the HERA signal chain. These effects
include:

Cross-talk – an effect due to over-the-air coupling between
nearby HERA receivers and dipole-arm coupling. This spurious
correlation is mocked by convolving the simulated visibility with
white noise.

HERA bandpass – empirically derived from HERA bandpass
measurements and fit to a seventh-order polynomial (Parsons &
Beardsley 2017).

Gain fluctuations – fluctuations are applied to the analytic HERA
bandpass by introducing individual phase delays with a uniform
spread between −20 ≤ δτ ≤ 20 ns.

We simulate a training data set of 1000 HERA observations of
10 min (60 time integrations) over the frequency range of 100–
200 MHz (1024 frequency channels). The mean RFI occupancy
rate for these simulated observations was ∼ 10 per cent. This
value differs from the ∼3 per cent which is the typically observed
RFI environment in the Karoo Desert, South Africa seen in past

Figure 3. The hera sim mock RFI (blue) occupancy rates across the band
with its variance (blue region), as compared to RFI flagged in our real HERA
data evaluation data set (orange) with its own variance (orange region). The
simulated RFI is overemphasized (>10 per cent) in the training data set.
This is done in an attempt to balance the training due to RFI being a
significantly sparse class which without would lead to more significance
placed on non-RFI when computing the loss.

HERA observations (Kohn 2016) which used a simple statistical
thresholding RFI algorithm. The comparison between our simulated
and more recent real HERA data set RFI occupancy rates across
the band can be seen in Fig. 3. We further expand this training
data set by performing data augmentation techniques on the re-
duced spectral windows. These techniques include mirroring over
time and frequency, Gaussian random noise injection (correlated
between amplitude and phase) with an amplitude that is at most
10 per cent of |V| the visibility amplitude and by translating a
spectral window across the band creating unique window samples
at varying frequency intervals. Using a translation in frequency has
the intent of reducing overfitting to steady-state narrow-band RFI
(e.g. ORBCOMM) because of repetitive sub-band samples entering
the training data set.

After increasing our simulated data set volume through augmen-
tation it is sliced into 16 spectral windows and padded according
to Section 2.2 which results in 44 800 unique spectral window
visibilities each of size 68 time samples × 68 frequency channels.
We separate this simulated data set by an 80–20 split, where
80 per cent of the simulated data set is used for training and
20 per cent is used for validation.

3 EVA LUATI ON

For the evaluation of our networks, we used several data sets
unseen in training. The real observed data set used for evaluation
consisted of HERA observing data from the 2017–2018 season,
more specifically between the Julian Dates of 2458098–2458116,
which we will just refer to as our real HERA data set . The real
HERA data were composed of raw uncalibrated visibilities that
have been visually inspected and manually flagged by hand with
high- and low-frequency band edges removed. Hand flagging was
accomplished by looking in both amplitude and phase for sharp
discontinuities and structure that exhibited an increase in power
when compared to a fringing sky signal. The band edge removal is
a precaution due to the large dynamic range roll-off, which makes
discriminating between RFI and sky observations nearly impossible
for humans and algorithms alike. This reduces our actual data
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evaluation passband to 896 frequency channels which covers 106
≤ ν ≤ 194 MHz.

A simple approach to evaluation would rely on using the accuracy
of predictions meaning we only look at the number of correctly
predicted RFI pixels relative to all RFI, although this metric hides
important details to the performance of our networks. This is an
important consideration in this instance because our HERA data
observations contain on average 3 per cent of data corrupted by RFI,
which means a blanket classification of ‘No-RFI’ would yield an
accuracy rate of 97 per cent. To account for this class imbalance we
evaluate the effectiveness of our networks by using several metrics
commonly employed for classification. We use the standard metrics
of Recall and Precision, which are defined as

Recall = TP

TP + FN
= RFICorrect

RFICorrect + RFIIncorrect
(2)

Precision = TP

TP + FP
= RFICorrect

RFICorrect + NoRFIIncorrect
(3)

where we consider true positives (TP) to be correctly predicted RFI
pixels, false negatives (FN) are RFI pixels identified as No-RFI, and
false positives (FP) are no-RFI pixels incorrectly identified as RFI.
We can therefore understand Recall as the fraction of all RFI events
identified by the flagging algorithm, and Precision the fraction of
identified RFI that is actually RFI.

We also need a metric that is sensitive to a data set with a
sparse class, as in our case where RFI represents < 3 per cent of our
observations, and one that can condense our overall performance
into a single metric. We therefore can use the binary classifier
performance metric, the F-score which has the general form of

Fβ = (1 + β2)
Recall · Precision

β2 · Precision + Recall
(4)

where we set β = 2 to preferentially weight Recall.2 The F2 score
therefore provides us with a metric that has an aggressive stance
towards RFI while still being somewhat sensitive to false positive
flagging. Due to the nature of measuring the 21 cm EoR signal
with HERA where we have collected sufficient data to not be noise
limited, we can sacrifice good quality observations for the sake of
reducing as much RFI contamination as possible; thus allowing us
a higher rate of FPs.

We compare three distinct algorithms: the amplitude-only DFCN,
amplitude–phase DFCN, and the Watershed RFI algorithm. For a
fair comparison, we evaluate the DFCNs after both have converged
independently of the number of training epochs, ensuring that they
have learned the training data set to their maximum capability. The
networks are then checked for overfitting by comparing that the
evaluation loss is similar to that of each networks training loss
when applied to the unseen 20 per cent of simulated visibilities set
aside for evaluation.

Before we approach the evaluation on our HERA data, we can
further optimize how our networks handle the shift in domain from
simulation to observed. This optimization can be seen by looking
at the receiver operating characteristics (ROC) curves in Fig. 4 of
both the networks and the Watershed algorithm. The ROC curve
gives us a general idea of the performance between our networks by
looking at how the TP and FP rates respond to different thresholding
values of each networks’ output layer. An optimal threshold is found

2An Fβ score with β < 1 describes a preference for weighting Precision
over Recall.

Figure 4. ROC curve showing a broad model comparison between all three
RFI flagging algorithms, amplitude DFCN (red), amplitude–phase DFCN
(black), and Watershed (orange). The ROC curves were derived from each
algorithm predicting on real HERA data visibilities (solid) and simulated
HERA visibilities (broken). Black circles represent the optimal F2 score.
The area under the curve (AUC) metric condenses the overall performance
of our algorithms and tells us that the amplitude–phase network exhibits the
best response on our real data with an AUC of 0.95. The TPR and FPRs for
the real data (solid) are based on manually flagging RFI to the best of our
ability to discern RFI from signals on the sky and therefore should not be
taken as a ground truth.

per network/algorithm and per data set allowing us the freedom to
tune our predictions for a particular instance. We determine this
optimal thresholding value by choosing the maximum F2 score
across all thresholds which is shown to find a reasonable balance in
TPR and FPR by locating the ‘knee’ of the ROC curve. By using
an ROC curve in conjunction with the F2 score which is reliant
on our combined Recall and Precision we are able to compare
our predictive power per data set while still being sensitive to our
RFI/Non-RFI class imbalance.

For a more comprehensive understanding of each algorithm’s
behaviour, we present the performance metric results in Table 3
as applied to simulated data sets. These metrics are performed on
data that are unique from the previous training/evaluation data sets
and include a control data set which has no RFI present and four
others that contain a single distinct class of RFI. An example of
what each RFI class is modelled after is shown in Fig. 5. In doing
this, we can gauge how sensitive each algorithm is to a certain class
of RFI. The DFCN networks both perform well on the narrow-
band time persistent and burst RFI which is unsurprising as these
simulations closely resemble the evaluation data set and only differ
in occurrence of events. However, both networks are inadequate for
identifying broad-band bursts and ‘blips’. This is understandable
from a training perspective as both of these classes of RFI are going
to be the last to be modelled in our networks as they account for
only a minor fraction of all simulated RFI and lead to little overall
optimization of the loss. This could potentially be remedied by
placing more emphasis on these two classes of RFI in the training
data set or a much more in depth hyperparameter optimization of
per-layer kernel sizes.

We compare all three algorithms as applied to a simulated
hera sim and real HERA data set in Table 4. Looking at the predic-
tion rates, both DFCN networks display an immense improvement
over the Watershed RFI algorithm, boasting rates of 32 and 22 times
better than the Watershed, for the amplitude and amplitude–phase
networks respectively. The faster amplitude only prediction rate
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Table 3. RFI recovery metrics based on individual type of simulated RFI. We look at the Recall, Precision, and F2 score for each of the three algorithms as
simulated with hera sim. All metrics here are determined under the condition that an optimal threshold value was found by maximizing the F2 score. The
Recall and Precision rates are the average over 1000 simulated waterfall visibilities with the same simulation parameters for foregrounds and signal chain
outlined in Section 2.3. Values in bold indicate the best achieved rate within each RFI type across algorithms.

RFI classes
No RFI Narrow band Narrow-band burst Broad-band burst ‘Blips’

Algorithm Accuracy ( per cent) Recall − Precision − F2 ‘ ’ ‘ ’ ‘ ’

Amp DFCN 94 0.98 − 0.82 − 0.94 0.77 − 0.65 − 0.74 0.16 − 0.67 - 0.19 0.35 − 0.01 − 0.07
Amp–Phs DFCN 98 0.99 − 0.83 − 0.95 0.77 − 0.67 − 0.74 0.18 − 0.68 − 0.21 0.35 − 0.02 − 0.08
Watershed RFI 98 0.49 − 0.95 − 0.54 0.32 − 0.97 − 0.37 0.99 − 0.74 − 0.98 0.71 − 0.73 − 0.71

Figure 5. Examples of the four RFI classes from HERA data as they appear in amplitude and phase that we model in our simulations. Note the different
time and frequency scales on each plot. The narrow-band example (row 1) centred at a frequency of ∼137.2 MHz is the ORBCOMM satellite system which
is occasionally intermittent. Narrow-band burst (row 2) is typically limited across only a few frequency channels (≤500 kHz) and has no consistent operating
pattern over time. Broad-band burst events (row 3) are short time duration (≤40 s) and can exist across the entire band (e.g. lightning) or in a sub-band as seen
here flanked by the South African Broadcasting Corporation’s channel 4 video (175.15 MHz) and audio (181.15 MHz) broadcasts (Kohn 2016). The ‘blips’
(row 4) demonstrate the one off nature of this sparse class as compared to the intermittent transmitter at frequency 125 MHz.

Table 4. RFI recovery metrics for hera sim simulated data containing signal chain effects with all classes of RFI
and raw (uncalibrated) HERA observations from the 2017–2018 observing season. All results in the real HERA data
column are based off of manually identified RFI and therefore the ground truth is uncertain especially in the low SNR
limit for RFI. Our real HERA data included observations from LSTs of 0 ≤ t ≤ 5 h and across baseline lengths of
7 ≤ |b| ≤ 100 λ. Values in bold correspond to the best achieved result for that metric. All three algorithms are run on a
single NVIDIA GeForce GTX TITAN GPU.

hera sim HERA real Prediction rate
Algorithm Recall − Precision − F2 ‘ ’ waterfall h−1 GPU−1

Amp DFCN 0.90 − 0.61 − 0.82 0.76 − 0.42 − 0.65 2.4 × 105

Amp–phs DFCN 0.90 − 0.82 − 0.88 0.81 − 0.58 − 0.75 1.6 × 105

Watershed RFI 0.53 − 0.95 − 0.58 0.64 − 0.88 − 0.68 7.4 × 103
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(a)

(b)

Figure 6. (a) Example of the real HERA waterfall visibilities used in Fig. 7 prior to any RFI flagging in amplitude and phase. (b) Simulated HERA waterfall
visibilities used in Fig. 8 without RFI flagging.

Figure 7. A comparison between the three flagging algorithms described in this paper as applied to a sub-band (157−193 MHz) from the real HERA data set,
which has been flagged manually and is used as the approximate ground truth. Orange indicates TP, white is FP, and red represents FN. In this example, the
amplitude–phase fed DFCN ultimately has the best TP outcome but, as seen in Table 4, both the DFCN algorithms take a more aggressive stance towards RFI
resulting in higher rates of FP when compared to the Watershed algorithm.

compared to the amplitude–phase is unsurprising, as the number of
parameters involved in an amplitude–phase prediction is roughly
1.5 times more and scales approximately proportional with the
prediction rate.

We demonstrate each of these algorithms on a sample of real
HERA data and a simulation from hera sim, as shown in Fig. 6. An
example of these results, which serves to give an appropriate idea
of the average performance as applied to a real HERA waterfall
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Figure 8. A similar comparison as in Fig. 7 demonstrating how each RFI flagging algorithm performs on simulated HERA data from hera sim. Orange
indicates TP, white is FP, and red is FN. The simulated waterfall visibility is of a 25λ baseline dominated by strong diffuse emissions from the de Oliveira-Costa
et al. (2008) GSM. The Watershed algorithm’s inability to discriminate between RFI and sky, as indicated by its higher FN rate, in this instance hints that there
is required fine-tuning of its kernel size and initial threshold hyperparameters, due to the spectral structure in our simulations.

visibility is shown in Fig. 7; how each compares on simulated data
can be seen in Fig. 8. Both DFCN networks have a tendency to
overpredict RFI where there may not be any, however in the case of
the narrow-band RFI seen in frequency channels 175 and 189 MHz,
it may not be unreasonable to be more aggressive as leakage into
adjacent channels can occur. This can be difficult to quantify of
course as the ground truth of our real HERA data is unknown and
RFI leakage can be easily masked by the sky.

4 C O N C L U S I O N S

Machine learning applications in the fields of astronomy and
cosmology are rapidly developing, and in many cases are beginning
to outmaneuver the classical algorithms by way of increased speed
and more accurate predictions. In this paper, we described an RFI
identification approach to using a DFCN, which combined the
amplitude and phase of an interferometer’s measured visibility to
predict which time–frequency pixels contained RFI. We compared
this result to the Watershed RFI algorithm in the HERA data
processing pipeline, and demonstrated that the DFCN approach
was vastly more time efficient in its prediction with comparable to
improved RFI identification rates. We also show that by including
the phase component of the visibility we can mitigate the effects
of domain shift between an entirely simulated HERA visibility
training data set and the observed validation data set. This means that
by improving our simulated model for HERA visibilities, coupled
with an amplitude–phase DFCN we should be able to achieve an
extremely effective first-round RFI flagger that reduces a common
pipeline bottleneck. For reference, in the current HERA data pro-
cessing pipeline, the Watershed RFI algorithm consumes 60 per cent
of the total computational time, where the other 40 per cent includes
redundant and absolute calibration. We do however recognize that
the DFCN approach can have issues with identifying RFI bursts

that occupy single time–frequency samples, what we called ‘blips’,
and broad-band bursts. This is most likely due to an imbalanced
representation in our training data set, and the loss optimization not
being rewarded enough to drive the DFCNs to learn a subclass that
appears at a rate of < 0.1 per cent. This can be potentially overcome
by fine-tuning the model by using transfer learning (Yosinski et al.
2014), and would involve a training data set which consists almost
entirely of these two subclasses, where the trained DFCN model
shown here would serve as the starting point.

In near future build-outs of HERA, there will need to be an
extreme importance placed on reducing bottlenecks in the HERA
data processing pipeline. The current Watershed RFI flagging
algorithm does not scale particularly well, which puts this class
of fully CNN as an ideal alternative. The eventual number of
HERA dishes will total 350, which for a single 10 min observation
gives us 61 075 unique waterfall visibilities. In the amplitude–phase
DFCN design outlined in this paper the RFI flagging throughput is
1.6 × 105 waterfall h−1 GPU−13 which compares to the Watershed
RFI flagger at 7.4 × 103 on the same resources.

Future work related to the amplitude–phase DFCN could include
a modification to a similarly styled comprehensive data quality
classifier which should in-turn lead to improved results for sky based
(Barry et al. 2016) and redundant calibration (Zheng et al. 2014),
both of which requires exceptionally conditioned data. A strict
binary classifier could be achieved by developing a training data set
that does not use a mock sky, but an accurately modelled sky with
a proper HERA beam model. Of course it would also be possible
and might be better suited by developing an observation derived
training data set in this instance, as failure modes are generally
easier to identify in visibilities as opposed to contamination by RFI.

3Performed on a single NVIDIA GeForce GTX TITAN.
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It should also be possible to extend this work to arrays with better
temporal resolution such as the MWA (Tingay et al. 2015) in the
search for transients like fast radio bursts (Zhang et al. 2018). The
additional phase information could potentially reduce the low-end
limit of fluence for identification due to a more significant contrast
between RFI and sky fringes.

The github repository for the RFI DFCN described in this paper
can be found at https://github.com/UPennEoR/ml rfi.
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APPENDI X A : WATERSHED RFI A LGORITH M

The current algorithm used in the HERA analysis pipeline is the
Watershed RFI algorithm. This algorithm was developed for use on
data from the Precision Array for Probing the Epoch of Reionization
Array and HERA. Prior to identifying and removing suspected
RFI instances, the watershed algorithm uses a median filter that is
applied to the raw data. In one dimension, a median filter is defined
by the radius of the kernel K, which is applied as a sliding window
across the entire length of the input data vector. Specifically, given
an input vector x = [x0, x1, . . . , xN], the median filtered output for
a given entry x̃i can be expressed as:

x̃i = median(xi−K, xi−K+1, . . . , xi−1, xi, xi+1, . . . , xi+K), (A1)

where median() is a function which returns the median of the list
of data. By construction, the list will have an odd number of elements
in it, and so the median is guaranteed to be an entry in the list.

In two dimensions, the median filter is defined analogously to the
ID case, except that there are two filter radii (Kt, Kν) that define the
median filter. Here, we have used the subscripts t and ν to represent
the time and frequency axes found in a visibility waterfall. In general
these need not be the same, but in practice as part of the HERA
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Algorithm 1 Watershed XRFI Algorithm
1: procedure XRFI(Vij (t, ν))
2: Ṽij (t, ν) ← medfilt2d(Vij (t, ν), Kt ,Kν)

3: σij ← (∑
t,ν Ṽ 2

i,j (t, ν) − ∑
t,ν Ṽi,j (t, ν)

)1/2

4: zij (t, ν) ← ∣∣Ṽij (t, ν)/σij

∣∣

5: where∼zij (t, ν) > 6 � set initial flags
6: fij (t, ν) ← True
7: else where
8: fij (t, ν) ← False
9: end where

10: AddedFlags ← True
11: while AddedFlags do � flood fill to neighbors
12: AddedFlags ← False
13: for all fij (t, ν) ∈ t, ν do
14: if fij is True then � grow existing flags
15: for t ′ ← t ± 1 do � check times
16: if zij (t ′, ν) > 2 then
17: fij (t ′, ν) ← True
18: AddedFlags ← True
19: end if
20: end for
21: for ν ′ ← ν ± 1 do � check frequencies
22: if zij (t, ν ′) > 2 then
23: fij (t, ν ′) ← True
24: AddedFlags ← True
25: end if
26: end for
27: end if
28: end for
29: end while

30: return fij (t, ν)
31: end procedure

pipeline, both have the same value of Kt = Kν = 8. Empirically, these
values seem to fall into a ‘sweet spot’ of parameter space, where
the values were large enough that the overall algorithm catches the
majority of RFI events (as verified by inspecting the visibilities by
hand) while still remaining computationally tractable to run. Also,
to ensure the output of the median filter has the same dimensionality
as the input data, the arrays are padded with a reflection of the data
that is Kt or Kν elements long, rather than with zero values, to avoid
discontinuous jumps at the boundaries.

Physically, the median filter has the property of generating a
proxy for the underlying noise of the raw visibility data because of
its differencing of neighbouring time–frequency pixels, and helps
detrend the smooth foreground structure that is quite prominent and
exhibits a strong frequency dependence. Once the 2D median filter
has been computed for every point in the visibility, the output is a
‘noise’ visibility. The standard deviation of this ‘noise’ is computed,
which is then used to convert the noise to modified z-scores. (That
is, the value of the noise is divided by the standard deviation, to
quantify how strong of an outlier a particular data point is.) An
initial round of seeds is generated by identifying all of the 6σ

outliers (the data points whose absolute valued z-scores is greater
than six). Once the data have been pre-processed in this fashion, the
Watershed algorithm is used to identify all instances of RFI.

A Watershed algorithm (or more correctly, a flood-fill algorithm,
because the resulting image segments are not grouped or labelled) is

then used to identify the remaining RFI instances in the waterfall.4

Under the assumption that RFI events tend to have some coherency
either in time (e.g. for narrow-band emission that is almost always
on, such as ORBCOMM) or in frequency (e.g. for broad-band RFI
events caused by lightning), the initial flags generated by finding 6σ

outliers are extended to neighbouring pixels if the absolute value of
their z-score is greater than 2. These regions are extended until no
neighbouring 2σ values are encountered.

Algorithm 1 shows the pseudo-code of the XRFI flagging
algorithm. The algorithm takes in a waterfall of visibility data Vij(t,
ν) and returns a set of flags fij(t, ν) of the same dimensionality.
There are three main phases:

(i) Pre-process the visibility data.
(ii) Generate initial series of flags.
(iii) Flood-fill around initial flags to generate full set of flags.

As currently implemented, the Watershed XRFI algorithm
operates on the absolute value of the visibility data, though it could
be extended to operate on the real and imaginary components as
well. When running the Watershed XRFI algorithm in production,
the most computationally expensive part is the 2D median filter
which has a time complexity of O(KtKν). The overall complexity is
roughly O(NtNνKtKν) for a waterfall visibility with dimensions Nt

× Nν . Thus, speeding up the median filter operation by decreasing
the kernel size or leveraging GPU computing can provide a
significant speedup. Nevertheless, preliminary results have shown
that this speedup is still unable to match the speed offered by neural
networks.
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