1,416 research outputs found

    Two-Dimensional Forward Scattering – Comparisons of Approximate and Exact Solutions

    Get PDF
    Various methods for analyses of scattering are mentioned and new approximate relationships are derived. Experimental results for thin wire and several numerical simulations of forward scattering using approximate estimations, physical optics and exact solutions for two-dimensional scattering are presented both for far and near fields. That allows not only accuracy analyses but also conclusions about scattering and total fields in the presence of objects, which are important for many applications such as communications, bistatic and multistatic radars and electromagnetic compatibility

    Brownian motion in a non-homogeneous force field and photonic force microscope

    Full text link
    The Photonic Force Microscope (PFM) is an opto-mechanical technique based on an optical trap that can be assumed to probe forces in microscopic systems. This technique has been used to measure forces in the range of pico- and femto-Newton, assessing the mechanical properties of biomolecules as well as of other microscopic systems. For a correct use of the PFM, the force field to measure has to be invariable (homogeneous) on the scale of the Brownian motion of the trapped probe. This condition implicates that the force field must be conservative, excluding the possibility of a rotational component. However, there are cases where these assumptions are not fulfilled Here, we show how to improve the PFM technique in order to be able to deal with these cases. We introduce the theory of this enhanced PFM and we propose a concrete analysis workflow to reconstruct the force field from the experimental time-series of the probe position. Furthermore, we experimentally verify some particularly important cases, namely the case of a conservative or rotational force-field

    Magnetoresistance oscillations in GaAs/AlGaAs superlattices subject to in-plane magnetic fields

    Full text link
    The MBE-grown GaAs/AlGaAs superlattice with Si-doped barriers has been used to study a 3D-2D transition under the influence of the in-plane component of applied magnetic field. The longitudinal magnetoresistance data measured in tilted magnetic fields have been interpreted in terms of a simple tight-binding model. The data provide values of basic parameters of the model and make it possible to reconstruct the superlattice Fermi surface and to calculate the density of states for the lowest Landau subbands. Positions of van Hove singularities in the DOS agree excellently with magnetoresistance oscillations, confirming that the model describes adequately the magnetoresistance of strongly coupled semiconductor superlattices.Comment: 4 pages, 3 figures, elsart/PHYEAUTH macros; presented on the EP2DS-16 Conference in Albuquerque, New Mexico USA. To be published in Physica

    Experimental Study on Thermomechanical Properties of New-Generation ODS Alloys

    Get PDF
    By using a combination of new technologies together with an unconventional use of different types of materials, specific mechanical properties and structures of the material can be achieved. Some possibilities are enabled by a combination of powder metallurgy in the preparation of a metal matrix with dispersed stable particles achieved by mechanical alloying and hot consolidation. This paper explains the thermomechanical properties of new generation of Oxide Dispersion Strengthened alloys (ODS) within three ranges of temperature with specified deformation profiles. The results show that the mechanical properties of new ODS alloys are significantly affected by the thermomechanical treatment

    Radiation hardness of the PSD APDs for the CBM experiment

    Get PDF

    Public value management and new public governance as modern approaches to the development of public administration

    Get PDF
    The article studies Public Value Management and New Public Governance - two new approaches to the management process in the public sphere. It is established that they arose in response to modern challenges of the global world. Applying dialectical, theoretical and empirical methods of scientific research, in particular the method of analogy, classification, generalization, we identified the main factors that influenced the emergence of new approaches to management and policy making, and described each approach. The analogy of the traditional model of management and governance with the newest one is drawn. It is determined that according to the traditional model of public administration and governance, only the state has a monopoly on decision-making and centrally forms public policy

    Novel Approaches to Monitor and Manipulate Single Neurons In Vivo

    Get PDF
    The complexity of the vertebrate brain poses an enormous challenge to experimental neuroscience. One way of dealing with this complexity has been to investigate different aspects of brain function in widely different preparations, each best suited to address a particular question. Accordingly, cellular questions are typically addressed with intracellular recordings in in vitro preparations such as brain slices or neuronal cultures, whereas network behavior and sensory or motor response properties are analyzed in vivo, often with extracellular recordings. This division of labor has proved to be an experimentally effective strategy. However, although there seems to be no limit to the wealth of data that can be generated in this way, integrating results derived in different preparations comes with its own set of challenges. The enormous difficulties encountered when one attempts to link cellular phenomena such as synaptic plasticity to systems properties such as spatial memory (Martin et al., 2000) have shown us that close collaboration between molecular−cellular and systems neuroscience is required (Tonegawa et al., 2003) and that we need more convergence of experimental techniques to analyze the cellular basis of neural function under more natural conditions. Studying neurons under naturalistic conditions is, however, easier said than done. A return to in vivo preparations will only be successful if we are able to solve the technical problems that led previous researchers to abandon the study of intact brains in the first place. Thus, studying neurons at the cellular level in vertebrate brains is today first and foremost a technological challenge. Here we highlight recent efforts to improve our ability to analyze functions of single neurons in vivo. Given th
    corecore