2,330 research outputs found

    Magnetic nanoparticles as efficient bulk pinning centers in type-II superconductors

    Full text link
    Enhancement of flux pinning by magnetic nanoparticles embedded into the bulk of type-2 superconductor is studied both theoretically and experimentally. Magnetic part of the pinning force associated with the interaction between a spherical magnetic inclusion and an Abrikosov vortex was calculated in the London approximation. Calculations are supported by the experimental results obtained on sonochemically modified MgB2 superconductor with embedded magnetic Fe2O3 nanoparticles and compared to MgB2 with nonmagnetic Mo2O5 pinning centers of similar concentration and particle size distribution. It is shown that ferromagnetic nanoparticles result in a considerable enhancement of vortex pinning in large-kappa type-2 superconductors.Comment: PDF, 14 page

    Effects of High Intensity Ultrasound on BSCCO-2212 Superconductor

    Full text link
    Slurries of powdered Bi2Sr2CaCu2O8+x superconductor in low volatility alkanes were treated with intense ultrasound. Significant enhancements of magnetic irreversibility as well as transport critical current are reported. The effects are dependent on the concentration of the slurry and are optimal for 1.5% wt. slurry loading. Electron microscopy shows that ultrasonic treatment leads to a change in grain morphology and intergrain welding. The observed enhancement of superconducting properties is consistent with the limitations in critical currents in BSCCO superconductor being due to intergrain coupling rather than intragrain pinning strength.Comment: 3 page

    Sonochemical Modification of the Superconducting Properties of MgB2

    Full text link
    Ultrasonic irradiation of magnesium diboride slurries in decalin produces material with significant inter-grain fusion. Sonication in the presence of Fe(CO)5 produces magnetic Fe2O3 nanoparticles embedded in the MgB2 bulk. The resulting superconductor-ferromagnet composite exhibits considerable enhancement of the magnetic hysteresis, which implies an increase of vortex pinning strength due to embedded magnetic nanoparticles

    Attaching different kinds of proteinaceous nanospheres to a variety of fabrics using ultrasound radiation

    Get PDF
    The application of a rapid, non-destructive, cost-effective technique such as ultrasonic emulsification for the coating of different textiles was explored. The technical benefits for this research were the generation of multifunctional materials and their combinations through environmentally friendly processing technologies. We have shown for the first time that ultrasonic waves can be used to coat proteinaceous micro- and nanospheres (PM) of BSA (Bovine Serum Albumin) protein and casein on the surface of cotton and polyester (PE) fabrics. The creation and the anchoring of the microbubbles to the fabrics were performed by a one step reaction, and the process is usually stopped after 3 min. The PM of bovine serum albumin (BSA) bonded to cotton and polyester fabrics has shown stability for ~9 months. The PMs were shown to be attached more strongly to the polyester than to the cotton, and sustained stronger washing conditions on PE. The diameter of the BSA and the casein spheres on cotton was in the range of 0.8–1.0 µm, while on the PE it varied between 60 and 120 nm.This research, was carried out as part of the activities of the LIDWINE Consortium, Contract No NMP2-CT-2006-026741 LIDWINE is an IP Project of the 6th EC Progra

    Microspheres of mixed proteins

    Get PDF
    This paper describes the synthesis of mixed proteinaceous microspheres (MPMs) by the sonochemical method. The current fundamental research follows the research of Suslick and co-workers who have developed a method by which high-intensity ultrasound is used to make aqueous suspensions of proteinaceous microcapsules filled with water-insoluble liquids.1 By using high-intensity ultrasound, we have synthesized microspheres made of a few different proteins. The three proteins used in the current experiments are bovine serum albumin (BSA), green fluorescent protein (GFP), and cyan fluorescent protein–glucose binding protein–yellow fluorescent fused protein (CFP-GBP-YFP). The two synthesized microspheres made of mixed proteins are BSA-GFP and BSA-(CFP-GBP-YFP). This paper presents the characterization of the sonochemically produced microspheres of mixed proteins. It also provides an estimate of the efficiency of the sonochemical process in converting the native proteins to microspheres

    Effective collective barrier for magnetic relaxation in frozen ferrofluids

    Full text link
    Magnetic relaxation and frequency response were measured in frozen ferrimagnetic colloids of different concentrations. A crossover from reversible to irreversible behavior is observed for concentrated colloids. In irreversible state, magnetic relaxation is time-logarithmic over seven orders of magnitude of experimental time windows. A master curve construction within mean field phenomenological model is applied to extract effective collective barrier as a function of the irreversible magnetization. The barrier logarithmically diverges, providing evidence for self-organized critical behavior during magnetic relaxation in frozen ferrofluids

    A novel method for the preparation of non-agglomerated nanometre sized particles of lanthanum phosphate phosphors utilising a high surface area support in the firing process

    Get PDF
    This journal is © The Royal Society of Chemistry 2012A convenient method is described that uses a quartz wool substrate to immobilise nanometre sized phosphor precursor particles enabling them to be fired at high temperature without sintering/agglomeration. The nanometre sized phosphor particles are easily removed from the substrate by re-dispersion into liquid for subsequent use.Biotechnology and biological sciences research council (BBSRC

    Understanding the impact of cavitation on hydrocarbons in the middle distillate range

    Get PDF
    NOTICE: this is the author’s version of a work that was accepted for publication in Fuel. Changes resulting from the publishing process, such as peer review, editing, corrections, structural formatting, and other quality control mechanisms may not be reflected in this document. Changes may have been made to this work since it was submitted for publication. A definitive version was subsequently published in Fuel, 156, September 2015, pp. 30-39, http://dx/doi.org/10.1016/j.fuel.2015.04.026Hydrocarbons in the middle distillate range (C8 - C26) have been treated with ultrasound at 20 kHz - a frequency sufficient to drive acoustic cavitation. The high temperatures experienced as a result of the implosion of fuel vapour bubbles are sufficient to produce pyrolytic degradation and dehydrogenation, as well as a growth mechanism that results in the formation of small particles that have similarities with the primary soot particles produced during diesel combustion. These nanosized particles agglomerate as a result of kinetically driven collisions during cavitation to form a dispersion of micron sized particles in the treated hydrocarbon. The particles are carbonaceous in character, being a mixture of amorphous and graphitic-like carbon. The mass of material produced increases with the C/H atomic ratio of the hydrocarbon undergoing cavitation and is decreased through the addition (1 - 3 %v/v) of low boiling paraffinic hydrocarbons, possibly as a result of lowering the temperature developed inside imploding cavities. Dispersions of microparticles contain equilibrated levels of nanoparticles. If sufficiently high numbers of these smaller primary particles are present they agglomerate due to thermally driven collisions during post-cavitation storage. When this happened a sharp rise in the number of 1 - 2 µm particles was seen after only a few days. Some evidence is presented for the behaviour of ultrasonically treated hydrocarbons being related to the degradation of diesel fuel exposed to hydrodynamic cavitation in the fuel systems of modern common rail direct injection diesel engines.Shell Global Solution

    High speed synchrotron X-ray imaging studies of the ultrasound shockwave and enhanced flow during metal solidification processes

    Get PDF
    The highly dynamic behaviour of ultrasonic bubble implosion in liquid metal, the multiphase liquid metal flow containing bubbles and particles, and the interaction between ultrasonic waves and semisolid phases during solidification of metal were studied in situ using the complementary ultrafast and high speed synchrotron X-ray imaging facilities housed respectively at the Advanced Photon Source, Argonne National Laboratory, US, and Diamond Light Source, UK. Real-time ultrafast X-ray imaging of 135,780 frames per second (fps) revealed that ultrasonic bubble implosion in a liquid Bi-8 wt. %Zn alloy can occur in a single wave period (30 kHz), and the effective region affected by the shockwave at implosion was 3.5 times the original bubble diameter. Furthermore, ultrasound bubbles in liquid metal move faster than the primary particles, and the velocity of bubbles is 70 ~ 100% higher than that of the primary particles present in the same locations close to the sonotrode. Ultrasound waves can very effectively create a strong swirling flow in a semisolid melt in less than one second. The energetic flow can detach solid particles from the liquid-solid interface and redistribute them back into the bulk liquid very effectively
    • …
    corecore