88 research outputs found

    Maintenance Intravenous Immunoglobulin Treatment for Multiple Sclerosis Coexisting with Ehlers-Danlos Syndrome and Muir-Torre Syndrome: A Case Study

    Get PDF
    The therapeutic options for disease modification in relapsing-remitting multiple sclerosis (RRMS) have expanded remarkably in the last 15 years. Although intravenous immunoglobulins (IVIg) have shown some therapeutic effects in multiple sclerosis, reducing global supplies, restriction of treatment to essential indications and availability of effective alternative treatments for MS currently exclude IVIg from being an accepted therapy for MS, other than for some exceptional considerations. We report the case of a female patient with RRMS who was diagnosed with Ehlers-Danlos syndrome (EDS) and Muir-Torre syndrome (MTS) soon after the diagnosis of active RRMS was made. The coexisting conditions precluded the use of available disease-modifying treatments. She benefited from monthly and then bi-monthly IVIg, with a single mild relapse over 10 years. Discontinuation of IVIg due to reduced availability with a brief aborted course of subcutaneous PEGylated interferon-beta was followed by significant relapses. Five months after the first ocrelizumab infusion, she developed caecal cancer requiring colectomy. Reinstitution of IVIg is contemplated

    Biallelic PRMT7 pathogenic variants are associated with a recognizable syndromic neurodevelopmental disorder with short stature, obesity, and craniofacial and digital abnormalities

    Full text link
    PURPOSE Protein arginine methyltransferase 7 (PRMT7) is a member of a family of enzymes that catalyzes the methylation of arginine residues on several protein substrates. Biallelic pathogenic PRMT7 variants have previously been associated with a syndromic neurodevelopmental disorder characterized by short stature, brachydactyly, intellectual developmental disability, and seizures. To our knowledge, no comprehensive study describes the detailed clinical characteristics of this syndrome. Thus, we aim to delineate the phenotypic spectrum of PRMT7-related disorder. METHODS We assembled a cohort of 51 affected individuals from 39 different families, gathering clinical information from 36 newly described affected individuals and reviewing data of 15 individuals from the literature. RESULTS The main clinical characteristics of the PRMT7-related syndrome are short stature, mild to severe developmental delay/intellectual disability, hypotonia, brachydactyly, and distinct facial morphology, including bifrontal narrowing, prominent supraorbital ridges, sparse eyebrows, short nose with full/broad nasal tip, thin upper lip, full and everted lower lip, and a prominent or squared-off jaw. Additional variable findings include seizures, obesity, nonspecific magnetic resonance imaging abnormalities, eye abnormalities (i.e., strabismus or nystagmus), and hearing loss. CONCLUSION This study further delineates and expands the molecular, phenotypic spectrum and natural history of PRMT7-related syndrome characterized by a neurodevelopmental disorder with skeletal, growth, and endocrine abnormalities

    Biallelic PRMT7 pathogenic variants are associated with a recognizable syndromic neurodevelopmental disorder with short stature, obesity, and craniofacial and digital abnormalities

    Get PDF
    Chromatinopathy; Syndromic neurodevelopmental disorder; Syndromic obesityCromatinopatia; Trastorn sindròmic del neurodesenvolupament; Obesitat sindròmicaCromatinopatía; Trastorno sindrómico del neurodesarrollo; Obesidad sindrómicaPurpose Protein arginine methyltransferase 7 (PRMT7) is a member of a family of enzymes that catalyzes the methylation of arginine residues on several protein substrates. Biallelic pathogenic PRMT7 variants have previously been associated with a syndromic neurodevelopmental disorder characterized by short stature, brachydactyly, intellectual developmental disability, and seizures. To our knowledge, no comprehensive study describes the detailed clinical characteristics of this syndrome. Thus, we aim to delineate the phenotypic spectrum of PRMT7-related disorder. Methods We assembled a cohort of 51 affected individuals from 39 different families, gathering clinical information from 36 newly described affected individuals and reviewing data of 15 individuals from the literature. Results The main clinical characteristics of the PRMT7-related syndrome are short stature, mild to severe developmental delay/intellectual disability, hypotonia, brachydactyly, and distinct facial morphology, including bifrontal narrowing, prominent supraorbital ridges, sparse eyebrows, short nose with full/broad nasal tip, thin upper lip, full and everted lower lip, and a prominent or squared-off jaw. Additional variable findings include seizures, obesity, nonspecific magnetic resonance imaging abnormalities, eye abnormalities (i.e., strabismus or nystagmus), and hearing loss. Conclusion This study further delineates and expands the molecular, phenotypic spectrum and natural history of PRMT7-related syndrome characterized by a neurodevelopmental disorder with skeletal, growth, and endocrine abnormalities.The authors thank all patients and families for participation in this study. Part of this research was possible thanks to the Deciphering Developmental Disorders study. The Deciphering Developmental Disorders study presents independent research commissioned by the Health Innovation Challenge Fund (grant number HICF-1009-003). This study makes use of DECIPHER (http://www.deciphergenomics.org), which is funded by Wellcome. See www.ddduk.org/access.html for full acknowledgment. This study was also supported by the Wellcome Trust (WT093205MA and WT104033AIA to H.H. and 203141/Z/16/Z to M.P.F. and J.C.T.), Medical Research Council (H.H.), European Community’s Seventh Framework Programme (FP7/2007-2013, under grant agreement No. 2012-305121 to H.H.), the National Institute for Health Research (NIHR), University College London Hospitals, Biomedical Research Centre, and Fidelity Foundation. The Yale Center for Mendelian Genomics (UM1HG006504) is funded by the National Human Genome Research Institute. D.B. is supported by NIHR Research Professorship (RP-2016-07-011). F.L. and A.G. received funding from European Union and Région Normandie in the context of Recherche Innovation Normandie 2018. Europe gets involved in Normandie with the European Regional Development Fund. The authors thank the families and KFMC Research Centre for the partial support (Intramural Research Fund; Demography of Recessive Diseases in KSA; Grant No. 019-052). This work was also supported by King Salman Center for Disability research through Research Group RG-2022-010

    Growth and nutrition in children with Ataxia telangiectasia

    Get PDF
    Background: Ataxia telangiectasia (A-T) is a rare multisystem disease with high early mortality from lung disease and cancer. Nutritional failure adversely impacts outcomes in many respiratory diseases. Several factors influence nutrition in children with A-T. We hypothesised that children with A-T have progressive growth failure and that early gastrostomy tube feeding (percutaneous endoscopic gastrostomy, or PEG) is a favourable management option with good nutritional outcomes. Methods: Data were collected prospectively on weight, height and body mass index (BMI) at the national paediatric A-T clinic. Adequacy and safety of oral intake was assessed. Nutritional advice was given at each multidisciplinary review.Results: 101 children (51 girls) had 222 measurements (32 once, 32 twice, 24 thrice) between 2009 and 2016. Median (range) age was 9.3 (1.5 to 18.4) years. Mean (sd) weight, height and BMI Z-scores were respectively -1.03(1.57), -1.17 (1.18) and -0.36 (1.43). 35/101 children had weight Z-scores below -2 on at least one occasion. Weight, height and BMI Z-scores declined over time. Decline was most obvious after 8 years of age. 14/101 (13.9%) children had a PEG, with longitudinal data available for 12. In a nested case control study, there was a trend for improvement in weight in those with a PEG (p = 0.06). Conclusions: A-T patients decline in growth over time. There is an urgent need for new strategies, including an understanding of why growth falters. We suggest early proactive consideration of PEG from age 8 years onwards in order to prevent progressive growth failure

    SLC35A2-related congenital disorder of glycosylation : Defining the phenotype

    Get PDF
    We aim to further delineate the phenotype associated with pathogenic variants in the SLC35A2 gene, and review all published literature to-date. This gene is located on the X chromosome and encodes a UDP-galactose transporter. Pathogenic variants in SLC35A2 cause a congenital disorder of glycosylation. The condition is rare, and less than twenty patients have been reported to-date. The phenotype is complex and has not been fully defined. Here, we present a series of five patients with de novo pathogenic variants in SLC35A2. The patients' phenotype includes developmental and epileptic encephalopathy with hypsarrhythmia, facial dysmorphism, severe intellectual disability, skeletal abnormalities, congenital cardiac disease and cortical visual impairment. Developmental and epileptic encephalopathy with hypsarrhythmia is present in most patients with SLC35A2 variants, and is drug-resistant in the majority of cases. Adrenocorticotropic hormone therapy may achieve partial or complete remission of seizures, but the effect is usually temporary. Isoelectric focusing of transferrins may be normal after infancy, therefore a congenital disorder of glycosylation should still be considered as a diagnosis in the presence of a suggestive phenotype. We also provide evidence that cortical visual impairment is part of the phenotypic spectrum. (C) 2018 European Paediatric Neurology Society. Published by Elsevier Ltd. All rights reserved.Peer reviewe

    Consolidating the association of biallelic MAPKAPK5 pathogenic variants with a distinct syndromic neurodevelopmental disorder

    Get PDF
    BACKGROUND: MAPK-activated protein kinase 5 (MAPKAPK5) is an essential enzyme for diverse cellular processes. Dysregulation of the pathways regulated by MAPKAPK enzymes can lead to the development of variable diseases. Recently, homozygous loss-of-function variants in MAPKAPK5 were reported in four patients from three families presenting with a recognisable neurodevelopmental disorder, so-called 'neurocardiofaciodigital' syndrome. OBJECTIVE AND METHODS: In order to improve characterisation of the clinical features associated with biallelic MAPKAPK5 variants, we employed a genotype-first approach combined with reverse deep-phenotyping of three affected individuals. RESULTS: In the present study, we identified biallelic loss-of-function and missense MAPKAPK5 variants in three unrelated individuals from consanguineous families. All affected individuals exhibited a syndromic neurodevelopmental disorder characterised by severe global developmental delay, intellectual disability, characteristic facial morphology, brachycephaly, digital anomalies, hair and nail defects and neuroradiological findings, including cerebellar hypoplasia and hypomyelination, as well as variable vision and hearing impairment. Additional features include failure to thrive, hypotonia, microcephaly and genitourinary anomalies without any reported congenital heart disease. CONCLUSION: In this study, we consolidate the causality of loss of MAPKAPK5 function and further delineate the molecular and phenotypic spectrum associated with this new ultra-rare neurodevelopmental syndrome

    Growth and nutrition in children with Ataxia telangiectasia

    Get PDF
    Background: Ataxia telangiectasia (A-T) is a rare multisystem disease with high early mortality from lung disease and cancer. Nutritional failure adversely impacts outcomes in many respiratory diseases. Several factors influence nutrition in children with A-T. We hypothesised that children with A-T have progressive growth failure and that early gastrostomy tube feeding (percutaneous endoscopic gastrostomy, or PEG) is a favourable management option with good nutritional outcomes. Methods: Data were collected prospectively on weight, height and body mass index (BMI) at the national paediatric A-T clinic. Adequacy and safety of oral intake was assessed. Nutritional advice was given at each multidisciplinary review. Results: 101 children (51 girls) had 222 measurements (32 once, 32 twice, 24 thrice) between 2009 and 2016. Median (range) age was 9.3 (1.5 to 18.4) years. Mean (sd) weight, height and BMI Z-scores were respectively -1.03(1.57), -1.17 (1.18) and -0.36 (1.43). 35/101 children had weight Z-scores below -2 on at least one occasion. Weight, height and BMI Z-scores declined over time. Decline was most obvious after 8 years of age. 14/101 (13.9%) children had a PEG, with longitudinal data available for 12. In a nested case control study, there was a trend for improvement in weight in those with a PEG (p = 0.06). Conclusions: A-T patients decline in growth over time. There is an urgent need for new strategies, including an understanding of why growth falters. We suggest early proactive consideration of PEG from age 8 years onwards in order to prevent progressive growth failure

    Identification of the first ATRIP-deficient patient and novel mutations in ATR define a clinical spectrum for ATR-ATRIP Seckel Syndrome

    Get PDF
    A homozygous mutational change in the Ataxia-Telangiectasia and RAD3 related (ATR) gene was previously reported in two related families displaying Seckel Syndrome (SS). Here, we provide the first identification of a Seckel Syndrome patient with mutations in ATRIP, the gene encoding ATR-Interacting Protein (ATRIP), the partner protein of ATR required for ATR stability and recruitment to the site of DNA damage. The patient has compound heterozygous mutations in ATRIP resulting in reduced ATRIP and ATR expression. A nonsense mutational change in one ATRIP allele results in a C-terminal truncated protein, which impairs ATR-ATRIP interaction; the other allele is abnormally spliced. We additionally describe two further unrelated patients native to the UK with the same novel, heterozygous mutations in ATR, which cause dramatically reduced ATR expression. All patient-derived cells showed defective DNA damage responses that can be attributed to impaired ATR-ATRIP function. Seckel Syndrome is characterised by microcephaly and growth delay, features also displayed by several related disorders including Majewski (microcephalic) osteodysplastic primordial dwarfism (MOPD) type II and Meier-Gorlin Syndrome (MGS). The identification of an ATRIP-deficient patient provides a novel genetic defect for Seckel Syndrome. Coupled with the identification of further ATR-deficient patients, our findings allow a spectrum of clinical features that can be ascribed to the ATR-ATRIP deficient sub-class of Seckel Syndrome. ATR-ATRIP patients are characterised by extremely severe microcephaly and growth delay, microtia (small ears), micrognathia (small and receding chin), and dental crowding. While aberrant bone development was mild in the original ATR-SS patient, some of the patients described here display skeletal abnormalities including, in one patient, small patellae, a feature characteristically observed in Meier-Gorlin Syndrome. Collectively, our analysis exposes an overlapping clinical manifestation between the disorders but allows an expanded spectrum of clinical features for ATR-ATRIP Seckel Syndrome to be define

    Evaluating the association of biallelic OGDHL variants with significant phenotypic heterogeneity

    Get PDF
    BACKGROUND: Biallelic variants in OGDHL, encoding part of the α-ketoglutarate dehydrogenase complex, have been associated with highly heterogeneous neurological and neurodevelopmental disorders. However, the validity of this association remains to be confirmed. A second OGDHL patient cohort was recruited to carefully assess the gene-disease relationship. METHODS: Using an unbiased genotype-first approach, we screened large, multiethnic aggregated sequencing datasets worldwide for biallelic OGDHL variants. We used CRISPR/Cas9 to generate zebrafish knockouts of ogdhl, ogdh paralogs, and dhtkd1 to investigate functional relationships and impact during development. Functional complementation with patient variant transcripts was conducted to systematically assess protein functionality as a readout for pathogenicity. RESULTS: A cohort of 14 individuals from 12 unrelated families exhibited highly variable clinical phenotypes, with the majority of them presenting at least one additional variant, potentially accounting for a blended phenotype and complicating phenotypic understanding. We also uncovered extreme clinical heterogeneity and high allele frequencies, occasionally incompatible with a fully penetrant recessive disorder. Human cDNA of previously described and new variants were tested in an ogdhl zebrafish knockout model, adding functional evidence for variant reclassification. We disclosed evidence of hypomorphic alleles as well as a loss-of-function variant without deleterious effects in zebrafish variant testing also showing discordant familial segregation, challenging the relationship of OGDHL as a conventional Mendelian gene. Going further, we uncovered evidence for a complex compensatory relationship among OGDH, OGDHL, and DHTKD1 isoenzymes that are associated with neurodevelopmental disorders and exhibit complex transcriptional compensation patterns with partial functional redundancy. CONCLUSIONS: Based on the results of genetic, clinical, and functional studies, we formed three hypotheses in which to frame observations: biallelic OGDHL variants lead to a highly variable monogenic disorder, variants in OGDHL are following a complex pattern of inheritance, or they may not be causative at all. Our study further highlights the continuing challenges of assessing the validity of reported disease-gene associations and effects of variants identified in these genes. This is particularly more complicated in making genetic diagnoses based on identification of variants in genes presenting a highly heterogenous phenotype such as "OGDHL-related disorders"
    • …
    corecore