19 research outputs found

    Association of variations in HLA class II and other loci with susceptibility to EGFR-mutated lung adenocarcinoma

    Get PDF
    Lung adenocarcinoma driven by somatic EGFR mutations is more prevalent in East Asians (30-50%) than in European/Americans (10-20%). Here we investigate genetic factors underlying the risk of this disease by conducting a genome-wide association study, followed by two validation studies, in 3,173 Japanese patients with EGFR mutation-positive lung adenocarcinoma and 15,158 controls. Four loci, 5p15.33 (TERT), 6p21.3 (BTNL2), 3q28 (TP63) and 17q24.2 (BPTF), previously shown to be strongly associated with overall lung adenocarcinoma risk in East Asians, were re-discovered as loci associated with a higher susceptibility to EGFR mutation-positive lung adenocarcinoma. In addition, two additional loci, HLA class II at 6p21.32 (rs2179920; P =5.1 × 10(-17), per-allele OR=1.36) and 6p21.1 (FOXP4) (rs2495239; P=3.9 × 10(-9), per-allele OR=1.19) were newly identified as loci associated with EGFR mutation-positive lung adenocarcinoma. This study indicates that multiple genetic factors underlie the risk of lung adenocarcinomas with EGFR mutations

    Comparative Analysis of Genetic Alterations, HPV-Status, and PD-L1 Expression in Neuroendocrine Carcinomas of the Cervix

    No full text
    Neuroendocrine carcinoma of the cervix (NECC) is a rare and highly aggressive tumor with no efficient treatment. We examined genetic features of NECC and identified potential therapeutic targets. A total of 272 patients with cervical cancer (25 NECC, 180 squamous cell carcinoma, 53 adenocarcinoma, and 14 adenosquamous carcinoma) were enrolled. Somatic hotspot mutations in 50 cancer-related genes were detected using the Ion AmpliSeq Cancer Hotspot Panel v2. Human papillomavirus (HPV)-positivity was examined by polymerase chain reaction (PCR)-based testing and in situ hybridization assays. Programmed cell death-ligand 1 (PD-L1) expression was examined using immunohistochemistry. Somatic mutation data for 320 cases of cervical cancer from the Project GENIE database were also analyzed. NECC showed similar (PIK3CA, 32%; TP53, 24%) and distinct (SMAD4, 20%; RET, 16%; EGFR, 12%; APC, 12%) alterations compared with other histological types. The GENIE cohort had similar profiles and RB1 mutations in 27.6% of NECC cases. Eleven (44%) cases had at least one actionable mutation linked to molecular targeted therapies and 14 (56%) cases showed more than one combined positive score for PD-L1 expression. HPV-positivity was observed in all NECC cases with a predominance of HPV-18. We report specific gene mutation profiles for NECC, which can provide a basis for the development of novel therapeutic strategies

    Dabrafenib and trametinib administration in patients with BRAF V600E/R or non-V600 BRAF mutated advanced solid tumours (BELIEVE, NCCH1901): a multicentre, open-label, and single-arm phase II trialResearch in context

    No full text
    Summary: Background: BRAF V600 mutations are common in melanoma, thyroid, and non-small-cell lung cancers. Despite dabrafenib and trametinib being standard treatments for certain cancers, their efficacy across various solid tumours remains unelucidated. The BELIEVE trial assessed the efficacy of dabrafenib and trametinib in solid tumours with BRAF V600E/R or non-V600 BRAF mutations. Methods: Between October 1, 2019, and June 2022, at least 50 patients with measurable and seven without measurable diseases examined were enrolled in a subcohort of the BELIEVE trial (NCCH1901, jRCTs031190104). BRAF mutated solid tumour cases other than BRAF V600E mutated colorectal cancer, melanoma, and non-small cell lung cancer cases were included. Patients with solid tumours received dabrafenib (150 mg) twice daily and trametinib (2 mg) once daily until disease progression or intolerable toxicity was observed. The primary endpoint was overall response rate (ORR), and secondary endpoints included progression-free survival (PFS), 6-month PFS, and overall survival (OS). Bayesian analysis was performed using a prior distribution with a 30% expected response rate [Beta (0.6, 1.4)]. Findings: Fourty-seven patients with measurable disease, mainly with the BRAF V600E mutation (94%), and three others with non-V600E BRAF mutations (V600R, G466A, and N486_P490del) were enrolled. The primary sites included the thyroid gland, central nervous system, liver, bile ducts, colorectum, and pancreas. The confirmed ORR was 28.0%; the expected value of posterior distribution [Beta (14.6, 37.4)] was 28.1%, although the primary endpoint was achieved, not exceeding an unexpectedly high response rate of 60% obtained using Bayesian analysis. The disease control rate (DCR) was 84.0%. The median PFS was 6.5 months (95% confidence interval [CI]; 4.2–7.2 months, 87.8% at 6 months). Responses were observed across seven tumour types. Median OS was 9.7 months (95% CI, 7.5–12.2 months). Additional patients without measurable diseases had a median PFS of 4.5 months. Adverse events (AEs) were consistent with previous reports, with 45.6% of patients experiencing grade ≥3 AEs. Interpretation: This study reported promising efficacy against BRAF V600-mutant tumours. Dabrafenib and trametinib would offer a new therapeutic option for rare cancers, such as high-grade gliomas, biliary tract cancer, and thyroid cancer. Funding: This study was funded by the Japan Agency for Medical Research and Development (22ck0106622h0003) and a Health and Labour Sciences Research Grant (19EA1008)

    Clinical Application of Comprehensive Genomic Profiling Tests for Diffuse Gliomas

    No full text
    Next-generation sequencing-based comprehensive genomic profiling test (CGPT) enables clinicians and patients to access promising molecularly targeted therapeutic agents. Approximately 10% of patients who undergo CGPT receive an appropriate agent. However, its coverage of glioma patients is seldom reported. The aim of this study was to reveal the comprehensive results of CGPT in glioma patients in our institution, especially the clinical actionability. We analyzed the genomic aberrations, tumor mutation burden scores, and microsatellite instability status. The Molecular Tumor Board (MTB) individually recommended a therapeutic agent and suggested further confirmation of germline mutations after considering the results. The results of 65/104 patients with glioma who underwent CGPTs were reviewed by MTB. Among them, 12 (18.5%) could access at least one therapeutic agent, and 5 (7.7%) were suspected of germline mutations. A total of 49 patients with IDH-wildtype glioblastoma showed frequent genomic aberrations in the following genes: TERT promoter (67%), CDKN2A (57%), CDKN2B (51%), MTAP (41%), TP53 (35%), EGFR (31%), PTEN (31%), NF1 (18%), BRAF (12%), PDGFRA (12%), CDK4 (10%), and PIK3CA (10%). Since glioma patients currently have very limited standard treatment options and a high recurrence rate, CGPT might be a facilitative tool for glioma patients in terms of clinical actionability and diagnostic value
    corecore