8 research outputs found

    Dual-polarized chipless humidity sensor tag

    Get PDF
    In this letter, a miniaturized, flexible and high data dense dual-polarized chipless radio frequency identification (RFID) tag is presented. The tag is designed within a minuscule footprint of 29 × 29 mm2 and has the ability to encode 38-bit data. The tag is analyzed for flexible substrates including Kapton® HN DuPont™ and HP photopaper. The humidity sensing phenomenon is demonstrated by mapping the tag design, using silver nano-particle based conductive ink on HP photopaper substrate. It is observed that with the increasing moisture, the humidity sensing behavior is exhibited in RF range of 4.1–17.76 GHz. The low-cost, bendable and directly printable humidity sensor tag can be deployed in a number of intelligent tracking applications

    Polarization Insensitive Compact Chipless RFID Tag

    Get PDF
    This research article proposes a highly dense, inexpensive, flexible and compact 29 x 29 mm(2) chipless radio frequency identification (RFID) tag. The tag has a 38-bit data capacity, which indicates that it has the ability to label 238 number of different objects. The proposed RFID tag has a bar-shape slot/resonator based structure, which is energized by dual-polarized electromagnetic (EM) waves. Thus, portraying polarization insensitive nature of the tag. The radar cross-section (RCS) response of the proposed tag design is analyzed using different substrates, i.e., Rogers RT/duroid (R)/5880, Taconic (TLX-0), and Kapton (R) HN (DuPont (TM)). A comparative analysis is done, which reveal the changes observed in the RCS curve, as a result of using different substrates and radiators. Moreover, the effect on the RCS response of the tag is also examined, by bending the tag at different bent radii. The compactness and flexible nature of the tag makes it the best choice for Internet of things (IoT) based smart monitoring applications

    Biogenic Synthesis, Characterization, and In Vitro Biological Evaluation of Silver Nanoparticles Using Cleome brachycarpa

    Get PDF
    The therapeutical attributes of silver nanoparticles (Ag-NPs) in both conditions (in vitro and in vivo) have been investigated using different plants. This study focused on the green chemistry approach that was employed to optimize the synthesis of silver nanoparticles (AgNPs) using Cleome brachycarpa aqueous extract as a reducing and stabilizing agent. The characterization of obtained CB-AgNPs was undertaken using UV-visible spectroscopy, Atomic-force microscopy (AFM), Fourier-Transform Infrared Spectroscopy (FTIR), scanning electron microscopy (SEM), and Energy-Dispersive X-ray (EDX) analysis. Results suggest that CB-AgNPs synthesized via stirring produced small-sized particles with more even distribution. The synthesized silver nanoparticles were spherical with a 20 to 80 nm size range. In vitro studies were used to analyze antioxidant, antidiabetic, and cytotoxic potential under different conditions. The results also indicated that CB-AgNPs may have significant potential as an antidiabetic in low concentrations, but also exhibited potential antioxidant activity at different concentrations. Moreover, the anticancer activity against the breast cell line (MCF-7) with IC50 reached up to 18 μg/mL. These results suggest that green synthesized silver nanoparticles provide a promising phytomedicine for the management of diabetes and cancer therapeutics

    A green nutraceutical study of antioxidants extraction in Cleome brachycarpa - an ethnomedicinal plant

    Get PDF
    In the present study, an indigenous medical plant ‘Cleome brachycarpa’ was comparatively investigated for its antioxidant extraction for first time; using the soxhlet (traditional), microwave-assisted, and ultrasound-assisted (green) extraction methods with seven different solvents. The microwave-assisted extraction with methanol as solvent recovered the phytochemicals two-folds higher than the other methods with extraction efficiency of 370.57 ± 0.49 μg/ mg and correspondingly extracted the polyphenols: Phenolics (74.17 ± 0.61 μg GAE/mg DW), Flavonoids (65.46 ± 0.40 μg QE/mg DW), and Tannins (55.97 ± 0.85 μg CE/mg DW). The antioxidant capacity in relation with polyphenols was determined for Free radical scavenging activity and total antioxidant potential. The DPPH radical scavenging percentage of methanolic green extract of Cleome brachycarpa was found to be 81.37 ± 0.28 with IC50 of 0.30 mg/mL that matched up to the DPPH scavenging potential of Trolox. Furthermore, the ferric reducing potential was high up to 15.30 ± 0.30 μg GAE/mg DW. The correlation of antioxidant capacity with polyphenols was highly significant (p < 0.05). The green nutraceutical study has validated the ethnomedicinal importance of Cleome brachycarpa which is related to its high polyphenolic content. The findings highlight Cleome brachycarpa as a potential candidate for research and isolation of medicinal polyphenols

    Measuring routine childhood vaccination coverage in 204 countries and territories, 1980-2019 : a systematic analysis for the Global Burden of Disease Study 2020, Release 1

    Get PDF
    Background Measuring routine childhood vaccination is crucial to inform global vaccine policies and programme implementation, and to track progress towards targets set by the Global Vaccine Action Plan (GVAP) and Immunization Agenda 2030. Robust estimates of routine vaccine coverage are needed to identify past successes and persistent vulnerabilities. Drawing from the Global Burden of Diseases, Injuries, and Risk Factors Study (GBD) 2020, Release 1, we did a systematic analysis of global, regional, and national vaccine coverage trends using a statistical framework, by vaccine and over time. Methods For this analysis we collated 55 326 country-specific, cohort-specific, year-specific, vaccine-specific, and dosespecific observations of routine childhood vaccination coverage between 1980 and 2019. Using spatiotemporal Gaussian process regression, we produced location-specific and year-specific estimates of 11 routine childhood vaccine coverage indicators for 204 countries and territories from 1980 to 2019, adjusting for biases in countryreported data and reflecting reported stockouts and supply disruptions. We analysed global and regional trends in coverage and numbers of zero-dose children (defined as those who never received a diphtheria-tetanus-pertussis [DTP] vaccine dose), progress towards GVAP targets, and the relationship between vaccine coverage and sociodemographic development. Findings By 2019, global coverage of third-dose DTP (DTP3; 81.6% [95% uncertainty interval 80.4-82 .7]) more than doubled from levels estimated in 1980 (39.9% [37.5-42.1]), as did global coverage of the first-dose measles-containing vaccine (MCV1; from 38.5% [35.4-41.3] in 1980 to 83.6% [82.3-84.8] in 2019). Third- dose polio vaccine (Pol3) coverage also increased, from 42.6% (41.4-44.1) in 1980 to 79.8% (78.4-81.1) in 2019, and global coverage of newer vaccines increased rapidly between 2000 and 2019. The global number of zero-dose children fell by nearly 75% between 1980 and 2019, from 56.8 million (52.6-60. 9) to 14.5 million (13.4-15.9). However, over the past decade, global vaccine coverage broadly plateaued; 94 countries and territories recorded decreasing DTP3 coverage since 2010. Only 11 countries and territories were estimated to have reached the national GVAP target of at least 90% coverage for all assessed vaccines in 2019. Interpretation After achieving large gains in childhood vaccine coverage worldwide, in much of the world this progress was stalled or reversed from 2010 to 2019. These findings underscore the importance of revisiting routine immunisation strategies and programmatic approaches, recentring service delivery around equity and underserved populations. Strengthening vaccine data and monitoring systems is crucial to these pursuits, now and through to 2030, to ensure that all children have access to, and can benefit from, lifesaving vaccines. Copyright (C) 2021 The Author(s). Published by Elsevier Ltd.Peer reviewe

    Miniaturized humidity and temperature sensing RFID enabled tags

    Get PDF
    A compact 27-bit linearly polarized chipless radio frequency identification tag is presented in this research. The proposed tag is designed with an overall tag dimension of 23 × 23 mm2. The tag comprises of metallic (copper) rings-based structure loaded with slots. These slots correspond to a particular sequence of bits. The circular tag is analysed using 2 different substrates, that is, Rogers RT/duroid/5870 and flexible Rogers RT/duroid/5880. The radar cross-section response of frequency signatured tag is analysed for humidity and temperature sensor designs. Humidity sensing is achieved by deploying a DuPont Kapton HN heat resistant sheet on the shortest slot of the tag, that is, the sensing slot. Temperature sensing is attained using Rogers RT/duroid/5870 and Stanyl polyamide as a combined substrate. Hence, the miniaturized, robust, and flexible tag can be deployed over irregular surfaces for sensing purposes

    Biogenic Synthesis, Characterization, and In Vitro Biological Evaluation of Silver Nanoparticles Using <i>Cleome brachycarpa</i>

    No full text
    The therapeutical attributes of silver nanoparticles (Ag-NPs) in both conditions (in vitro and in vivo) have been investigated using different plants. This study focused on the green chemistry approach that was employed to optimize the synthesis of silver nanoparticles (AgNPs) using Cleome brachycarpa aqueous extract as a reducing and stabilizing agent. The characterization of obtained CB-AgNPs was undertaken using UV-visible spectroscopy, Atomic-force microscopy (AFM), Fourier-Transform Infrared Spectroscopy (FTIR), scanning electron microscopy (SEM), and Energy-Dispersive X-ray (EDX) analysis. Results suggest that CB-AgNPs synthesized via stirring produced small-sized particles with more even distribution. The synthesized silver nanoparticles were spherical with a 20 to 80 nm size range. In vitro studies were used to analyze antioxidant, antidiabetic, and cytotoxic potential under different conditions. The results also indicated that CB-AgNPs may have significant potential as an antidiabetic in low concentrations, but also exhibited potential antioxidant activity at different concentrations. Moreover, the anticancer activity against the breast cell line (MCF-7) with IC50 reached up to 18 μg/mL. These results suggest that green synthesized silver nanoparticles provide a promising phytomedicine for the management of diabetes and cancer therapeutics

    Measuring routine childhood vaccination coverage in 204 countries and territories, 1980–2019: a systematic analysis for the Global Burden of Disease Study 2020, Release 1

    No full text
    10.1016/s0140-6736(21)00984-3The Lancet39810299503-52
    corecore