190 research outputs found

    On Internal Resonance Analysis of a Double-Cable-Stayed Shallow-Arch Model with Elastic Supports at Both Ends

    Get PDF
    In previous research on the nonlinear dynamics of cable-stayed bridges, boundary conditions were not properly modeled in the modeling. In order to obtain the nonlinear dynamics of cable-stayed bridges more accurately, a double-cable-stayed shallow-arch model with elastic supports at both ends and the initial configuration of bridge deck included in the modeling is developed in this study. The in-plane eigenvalue problems of the model are solved by dividing the shallow arch (SA) into three partitions according to the number of cables and the piecewise functions are taken as trial functions of the SA. Then, the in-plane one-to-one-to-one internal resonance among the global mode and the local modes (two cables\u27 modes) is investigated when external primary resonance occurs. The ordinary differential equations (ODEs) are obtained by Galerkin\u27s method and solved by the method of multiple time scales. The stable equilibrium solutions of modulation equations are obtained by using the Newton-Raphson method. In addition, the frequency-/force-response curves under different vertical stiffness are provided to study the nonlinear dynamic behaviors of the elastically supported model. To validate the theoretical analyses, the Runge-Kutta method is applied to obtain the numerical solutions. Finally, some interesting conclusions are drawn

    Resonance Analysis between Deck and Cables in Cable-Stayed Bridges with Coupling Effect of Adjacent Cables Considered

    Get PDF
    The nonlinear dynamic model of a shallow arch with multiple cables is developed to model a long-span cable-stayed bridge. Based on the veering phenomenon of cable-stayed bridges, the in-plane modal internal resonance between the first mode of the shallow arch and the first mode of the cable is investigated under both primary resonance and subharmonic resonance. Modulation equations of the dynamic system are obtained by Galerkin discretization and the multiple scales method, in which the equilibrium solution of modulation equations is obtained by the Newton–Raphson method. Meanwhile, the Runge–Kutta method is applied to directly solve the ordinary differential equations to verify the accuracy of the perturbation analysis. Numerical analysis shows that the internal resonance occurs in adjacent cables; the energy transfer mechanism and the dynamic behavior of system become more complex

    Hierarchical Dense Correlation Distillation for Few-Shot Segmentation-Extended Abstract

    Full text link
    Few-shot semantic segmentation (FSS) aims to form class-agnostic models segmenting unseen classes with only a handful of annotations. Previous methods limited to the semantic feature and prototype representation suffer from coarse segmentation granularity and train-set overfitting. In this work, we design Hierarchically Decoupled Matching Network (HDMNet) mining pixel-level support correlation based on the transformer architecture. The self-attention modules are used to assist in establishing hierarchical dense features, as a means to accomplish the cascade matching between query and support features. Moreover, we propose a matching module to reduce train-set overfitting and introduce correlation distillation leveraging semantic correspondence from coarse resolution to boost fine-grained segmentation. Our method performs decently in experiments. We achieve 50.0% mIoU on COCO dataset one-shot setting and 56.0% on five-shot segmentation, respectively. The code will be available on the project website. We hope our work can benefit broader industrial applications where novel classes with limited annotations are required to be decently identified.Comment: Accepted to CVPR 2023 VISION Workshop, Oral. The extended abstract of Hierarchical Dense Correlation Distillation for Few-Shot Segmentation. arXiv admin note: substantial text overlap with arXiv:2303.1465

    Recent Advances in Ambipolar Transistors for Functional Applications

    Full text link
    Ambipolar transistors represent a class of transistors where positive (holes) and negative (electrons) charge carriers both can transport concurrently within the semiconducting channel. The basic switching states of ambipolar transistors are comprised of common offĂą state and separated onĂą state mainly impelled by holes or electrons. During the past years, diverse materials are synthesized and utilized for implementing ambipolar charge transport and their further emerging applications comprising ambipolar memory, synaptic, logic, and lightĂą emitting transistors on account of their special bidirectional carrierĂą transporting characteristic. Within this review, recent developments of ambipolar transistor field involving fundamental principles, interface modifications, selected semiconducting material systems, device structures, ambipolar characteristics, and promising applications are highlighted. The existed challenges and prospective for researching ambipolar transistors in electronics and optoelectronics are also discussed. It is expected that the review and outlook are well timed and instrumental for the rapid progress of academic sector of ambipolar transistors in lighting, display, memory, as well as neuromorphic computing for artificial intelligence.Ambipolar transistors represent transistors that allow synchronous transport of electrons and holes and their accumulation within semiconductors. This review provides a comprehensive summary of recent advances in various semiconducting materials realized in ambipolar transistors and their functional memory, synapse, logic, as well as lightĂą emitting applications.Peer Reviewedhttps://deepblue.lib.umich.edu/bitstream/2027.42/151885/1/adfm201902105_am.pdfhttps://deepblue.lib.umich.edu/bitstream/2027.42/151885/2/adfm201902105.pd

    A gate-variable spin current demultiplexer based on graphene

    Full text link
    Spintronics, which utilizes spin as information carrier, is a promising solution for nonvolatile memory and low-power computing in the post-Moore era. An important challenge is to realize long distance spin transport, together with efficient manipulation of spin current for novel logic-processing applications. Here, we describe a gate-variable spin current demultiplexer (GSDM) based on graphene, serving as a fundamental building block of reconfigurable spin current logic circuits. The concept relies on electrical gating of carrier density dependent conductivity and spin diffusion length in graphene. As a demo, GSDM is realized for both single-layer and bilayer graphene. The distribution and propagation of spin current in the two branches of GSDM depend on spin relaxation characteristics of graphene. Compared with Elliot-Yafet spin relaxation mechanism, D'yakonov-Perel mechanism results in more appreciable gate-tuning performance. These unique features of GSDM would give rise to abundant spin logic applications, such as on-chip spin current modulators and reconfigurable spin logic circuits.Comment: 18 pages,3 figures,1 tabl

    Metabolomic Shifts Associated with Heat Stress in Coral Holobionts

    Get PDF
    Understanding the response of the coral holobiont to environmental change is crucial to inform conservation efforts. The most pressing problem is “coral bleaching,” usually precipitated by prolonged thermal stress. We used untargeted, polar metabolite profiling to investigate the physiological response of the coral species Montipora capitata and Pocillopora acuta to heat stress. Our goal was to identify diagnostic markers present early in the bleaching response. From the untargeted UHPLC-MS data, a variety of co-regulated dipeptides were found that have the highest differential accumulation in both species. The structures of four dipeptides were determined and showed differential accumulation in symbiotic and aposymbiotic (alga-free) populations of the sea anemone Aiptasia (Exaiptasia pallida), suggesting the deep evolutionary origins of these dipeptides and their involvement in symbiosis. These and other metabolites may be used as diagnostic markers for thermal stress in wild coral

    Sensitivity of Mesoscale Modeling of Smoke Direct Radiative Effect to the Emission Inventory: a Case Study in Northern Sub-Saharan African Region

    Get PDF
    An ensemble approach is used to examine the sensitivity of smoke loading and smoke direct radiative effect in the atmosphere to uncertainties in smoke emission estimates. Seven different fire emission inventories are applied independently to WRF-Chem model (v3.5) with the same model configuration (excluding dust and other emission sources) over the northern sub-Saharan African (NSSA) biomass-burning region. Results for November and February 2010 are analyzed, respectively representing the start and end of the biomass burning season in the study region. For February 2010, estimates of total smoke emission vary by a factor of 12, but only differences by factors of 7 or less are found in the simulated regional (15degW-42degE, 13degS-17degN) and monthly averages of column PM(sub 2.5) loading, surface PM(sub 2.5) concentration, aerosol optical depth (AOD), smoke radiative forcing at the top-of-atmosphere and at the surface, and air temperature at 2 m and at 700 hPa. The smaller differences in these simulated variables may reflect the atmospheric diffusion and deposition effects to dampen the large difference in smoke emissions that are highly concentrated in areas much smaller than the regional domain of the study. Indeed, at the local scale, large differences (up to a factor of 33) persist in simulated smoke-related variables and radiative effects including semi-direct effect. Similar results are also found for November 2010, despite differences in meteorology and fire activity. Hence, biomass burning emission uncertainties have a large influence on the reliability of model simulations of atmospheric aerosol loading, transport, and radiative impacts, and this influence is largest at local and hourly-to-daily scales. Accurate quantification of smoke effects on regional climate and air quality requires further reduction of emission uncertainties, particularly for regions of high fire concentrations such as NSSA

    Metabolomic differences between invasive alien plants from native and invaded habitats

    Get PDF
    Globalization facilitated the spread of invasive alien species (IAS), undermining the stability of the world’s ecosystems. We investigated the metabolomic profiles of three IAS species: Chromolaena odorata (Asteraceae) Datura stramonium (Solanaceae), and Xanthium strumarium (Asteraceae), comparing metabolites of individual plants in their native habitats (USA), to their invasive counterparts growing in and around Kruger National Park (South Africa, ZA). Metabolomic samples were collected using RApid Metabolome Extraction and Storage (RAMES) technology, which immobilizes phytochemicals on glass fiber disks, reducing compound degradation, allowing long-term, storage and simplifying biochemical analysis. Metabolomic differences were analyzed using ultra-performance liquid chromatography-mass spectrometry (UPLC-MS) of samples eluted from RAMES disks. Partial Least Squares-Discriminant Analysis (PLS-DA) of metabolomes of individual plants allowed statistical separation of species, native and invasive populations of each species, and some populations on the same continent. Invasive populations of all species were more phytochemically diverse than their native counterparts, and their metabolomic profiles were statistically distinguishable from their native relatives. These data may elucidate the mechanisms of successful invasion and rapid adaptive evolution of IAS. Moreover, RAMES technology combined with PLS-DA statistical analysis may allow taxonomic identification of species and, possibly, populations within each species

    Sensitivity of Mesoscale Modeling of Smoke Direct Radiative Effect to the Emission Inventory: A Case Study in Northern Sub-Saharan African Region

    Get PDF
    An ensemble approach is used to examine the sensitivity of smoke loading and smoke direct radiative effect in the atmosphere to uncertainties in smoke emission estimates. Seven different fire emission inventories are applied independently to WRF-Chem model (v3.5) with the same model configuration (excluding dust and other emission sources) over the northern sub-Saharan African (NSSA) biomass-burning region. Results for November and February 2010 are analyzed, respectively representing the start and end of the biomass burning season in the study region. For February 2010, estimates of total smoke emission vary by a factor of 12, but only differences by factors of 7 or less are found in the simulated regional (15°W–42°E, 13°S–17°N) and monthly averages of column PM2.5 loading, surface PM2.5 concentration, aerosol optical depth (AOD), smoke radiative forcing at the top-of-atmosphere and at the surface, and air temperature at 2 m and at 700 hPa. The smaller differences in these simulated variables may reflect the atmospheric diffusion and deposition effects to dampen the large difference in smoke emissions that are highly concentrated in areas much smaller than the regional domain of the study. Indeed, at the local scale, large differences (up to a factor of 33) persist in simulated smoke-related variables and radiative effects including semi-direct effect. Similar results are also found for November 2010, despite differences in meteorology and fire activity. Hence, biomass burning emission uncertainties have a large influence on the reliability of model simulations of atmospheric aerosol loading, transport, and radiative impacts, and this influence is largest at local and hourly-to-daily scales. Accurate quantification of smoke effects on regional climate and air quality requires further reduction of emission uncertainties, particularly for regions of high fire concentrations such as NSSA
    • 

    corecore