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In previous research on the nonlinear dynamics of cable-stayed bridges, boundary conditions were not properly modeled in the
modeling. In order to obtain the nonlinear dynamics of cable-stayed bridges more accurately, a double-cable-stayed shallow-arch
model with elastic supports at both ends and the initial configuration of bridge deck included in the modeling is developed in this
study. The in-plane eigenvalue problems of the model are solved by dividing the shallow arch (SA) into three partitions
according to the number of cables and the piecewise functions are taken as trial functions of the SA. Then, the in-plane one-to-
one-to-one internal resonance among the global mode and the local modes (two cables’ modes) is investigated when external
primary resonance occurs. The ordinary differential equations (ODEs) are obtained by Galerkin’s method and solved by the
method of multiple time scales. The stable equilibrium solutions of modulation equations are obtained by using the Newton-
Raphson method. In addition, the frequency-/force-response curves under different vertical stiffness are provided to study the
nonlinear dynamic behaviors of the elastically supported model. To validate the theoretical analyses, the Runge-Kutta method is
applied to obtain the numerical solutions. Finally, some interesting conclusions are drawn.

Cable-stayed bridge, Internal resonance, Vertical elastic support, Eigenvalue, Nonlinear vibration
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1. Introduction

Due to their long span, low damping and light weight, cable-
stayed bridges are prone to severe vibrations under en-
vironmental excitations [1]. In some extreme situations,
large nonlinear vibrations take place and they adversely af-
fect the performance of bridges. Last year, Humen Bridge in
Guangdong Province suffered large vortex-induced vibra-
tions under winds, which seriously affected the comfort and
safety of drivers. Actually, when nonlinear vibrations occur,
the natural frequencies and mode shapes of the bridge system
are not independent of vibration amplitude as in linear the-
ory. Instead, if the vibration amplitude is large enough,

natural frequencies and mode shapes depend on vibration
amplitude [2]. To improve the performance of long-span
cable-stayed bridges, it is imperative to systematically in-
vestigate the nonlinear dynamics of this type of bridge.
To study the nonlinear dynamics of a cable-stayed bridge,

it is important to properly model the bridge itself [3]. Some
studies modeled the entire bridge using a single cable [4,5] or
beam [6-10], while others modeled it using a cable-stayed
beam [11]. The cable-stayed beam model was firstly devel-
oped by Fujino and co-workers [12]. They established a
3DOF model that considered horizontal and vertical dis-
placements of the beam and horizontal displacement of the
cable. Thereafter, a lot of research was conducted based on a
cable-stayed beam model. Gattuli and co-workers [13-15]
carried out systematic studies on a cable-stayed beam. They
conducted a parametric investigation of linear and nonlinear
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behaviors in a cable-stayed beam and revealed how the
mechanical characteristics affected the occurrence of global,
local and coupled modes. They found that particular com-
binations of parameters would lead to a veering phenomenon
between global and local frequencies. Through modal testing
in the lab, Caetano et al. [16,17] studied the dynamic inter-
action between cables and deck/towers under the excitation
from the seismic recordings. The results demonstrated that
dynamic cable interactions with deck/towers and cable in-
terference reduced bridge responses. Fung et al. [18] in-
vestigated the nonlinear vibration of cable-stayed bridges
with time-varying length and tension. Wei et al. [19] ana-
lyzed the bifurcation and chaos phenomena of a cable-beam
structure by including the comprehensive influence of non-
linear term caused by cable’s sag and modal coupling of
beam and cable. They pointed out that the structure exhibited
different motions, such as chaotic motion or periodic and
chaotic motions alternating, under different loading situa-
tions. Wang et al. [20] pointed out that the in-plane natural
frequencies of a cable-stayed beam may include the con-
tribution from the cable-deck interaction. By solving the
eigenvalue problem, they found that the low-order out-of-
plane natural frequencies were not affected by the cable-deck
interaction and thus could be used to evaluate the cable force.
Wang et al. [21] solved the in-plane and out-of-plane ei-
genvalue problems of a cable-stayed beam and studied the
influence of the nonlinear coupling term on the dynamic
characteristics of the cable-stayed beam.
Although previous research provided interesting results,

the initial configuration of the bridge deck was not taken into
consideration in the modeling. In practice, there is usually an
initial camber to address the need of drainage in a cable-
stayed bridge. This inspires many researchers to pay atten-
tion to the initial configuration (geometrical nonlinearity) of
the bride deck [22]. Malhotra and Namachchivaya [23,24]
investigated the chaotic motions of the shallow arch (SA)
under one-to-one (and one-to-two) internal resonance. By
considering the cable-deck interaction, a double-cable-
stayed shallow-arch model was developed to model a cable-
stayed bridge in Refs. [25,26], and the in-plane internal re-
sonances of the system subjected to different external ex-
citations were studied.
In addition, previous research assumed that the boundary

conditions were ideal, either as hinged-hinged (H-H) ends or
clamped-clamped (C-C) ends. In practice, boundary condi-
tions are much more complex than this [27]. Leissa and Qatu
[28] pointed out that even a steel beam perfectly welded to an
infinitely large constraint block (i.e., an infinite half-space)
would undergo rotation at the clamped end during vibration.
Hence, elastic boundary conditions are more reasonable in
reality [29]. By solving the eigenvalue equation, Yi et al. [30]
proved that the elastic constraints had an influence on the
natural frequency and mode shapes of the structural system,

and there was a corresponding relationship with the coeffi-
cient of the modulation equation. Pi et al. [31] analyzed the
nonlinear behaviors of elastically supported SAs. The results
showed that the flexibility of the elastic supports and the
shallowness of the arch implied an important influence on
the nonlinear structural properties of the arch.
In order to obtain the nonlinear dynamics of a cable-stayed

bridge more accurately, it is imperative to model the bridge
as close to the real-world situation as possible. To bridge this
research gap, a double-cable-stayed shallow-arch model with
elastic supports at both ends and the initial configuration of
the bridge deck included in the modeling is developed in this
study. This research will explore the influence of proper
modeling (using elastic supports to model boundary condi-
tions and including the initial configuration of the bridge
deck) on the dynamics of a cable-stayed bridge. As known,
one-to-two and one-to-one internal resonances between the
SA and the cable are the most common and possible re-
sonance forms. As our present work, this paper is mainly
concerned with one-to-one-to-one (two cables) internal re-
sonance, which should be of great interest.
The remainder of this study is organized as follows. First,

the cable-stayed shallow-arch model with proper boundary
conditions and the initial configuration of the bridge deck is
developed and the in-plane eigenproblem is solved by the
separation-of-variable method. Then, the theoretical solution
is derived. Discretization is conducted by applying Ga-
lerkin’s method to get ordinary differential equations
(ODEs) of the system and the corresponding modulation
equations are acquired using the multiple timescale method.
Next, the frequency-/force-response curves under different
vertical stiffness are presented to explore the nonlinear dy-
namics of the model, and validation of the derivation of
theoretical solutions is conducted. Finally, summary and
conclusions are provided.

2. Modeling and planar eigenproblem solving

Figure 1 presents a simplified model consisting of a SA and
two cables. In most references [32,33], the tower is usually
considered to be rigid based on the fact that the vibration of
the tower is very small compared with the beam and the
cable. Hence, in Fig. 1, the two cables are fixed at one end
and the other end is connected with the SA at s1 and s2 ,
respectively. The left cable is named as Cable 1, and the right
is named as Cable 2. In order to model the boundary con-
ditions more reasonably, the SA is constrained by four linear
springs, namely, vertical springs with the stiffness of k1 and
k2 and rotational springs with stiffness of k3 and k4 . It
should be noted that the superscript “ ” denotes the dimen-
sional parameter. Two Cartesian coordinates soy and xjojyj
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(j = 1, 2, similarly hereinafter) are established, and in this
way, the planar vibration of the model can be completely
described by the SA transverse displacement va and the cable
displacement components vc , uc . Additionally, subscript a
denotes SA and c denotes cable. θj is the acute angle between
the chord orientation of the cable and the horizontal line and
f a is the rise of the SA. In this study, the SA is assumed to be
subjected to a distributed excitation, as shown in Fig. 1.
F s( )1 describes the spatial distribution of the harmonic load
and is the frequency. For the sake of derivation, the fol-
lowing assumptions are made.
(a) Ignore the actions of the tower on the model, that is, the

tower is rigid.
(b) The sag-to-span ratio of the cable is small ( 1/10). In

this case, the equilibrium configuration for the inclined cable
can be approximated by the parabola [14]. Additionally, the
flexural, shear and torsional rigidities of the cable are also
negligible.
(c) The sag-to-span ratio of the SA is small ( 0.05). Hence,

the initial deflection of the SA is described through a sinu-
soidal function [34]. Moreover, the shear and torsional ri-
gidities of the SA are ignored.
(d) The axial vibration of the SA is ignored, as it is usually

much smaller than transverse vibration. In addition, the in-
fluence of cable vibration on the axial motion of the SA is
also neglected.
(e) The action of axial force of the cable on the SA is

regarded as external loads, as seen in Eq. (2).
(f) The centerline stretching of the SA is related to its

transverse displacement, which follows Ref. [34].
(g) The effects of the SA transverse movement on cable are

assumed to be vertical dragging (perpendicular to os). In this
regard, cable displacement contains two parts: one is the pure
modal displacement, and the other is vertical dragging by the
SA vibration.
According to the Hamilton’s principle, the integral-dif-

ferential equation governing the transverse vibration of the

SA can be obtained as [24]:

E I v E A L v y v s v y

µ v A v p s t

1 1
2

+ d +

+ + = ( , ), (1)

a a a a a

L

a a a a a

a a t a a a tt a

*

0

2* * * * *

, ,

where E, I, A, μ and ρ are Young’s modulus, moment of
inertia of the cross section, cross-sectional area, damping
parameter and mass per unit length, respectively. L is the
span of the SA. ya is the initial deflection of the SA men-
tioned in assumption (b), and it is included in the equation to
model the initial configuration of the SA. The comma pre-
ceding t in the subscript denotes differentiation with respect
to t and the primes denote the differentiation with respect to
coordinate s or xj. pa is the total loads acting on the SA,
including the external load and the action of motion of
cables, which can be written as:

p s t s s E A e t F s t( , ) = ( ) ( )sin + ( )cos ,

(2)

a
j

j cj cj cj j
=1

2

1

where s s( )j is Kronecker delta function. ecj denotes the
uniform dynamic elongation of the jth cable and is given by

e t
u l t

l l y v v x( ) =
( , )

+ 1 + 1
2

d . (3)cj
cj cj

cj cj

l

cj cj cj j
0

* * 2*

cj

In Eq. (3), lcj and ycj denote the span and static equilibrium
configuration of the jth cable, respectively.
Similarly, the differential equation governing the trans-

verse vibration of the jth cable can be adopted from Ref. [14]
and presented as:

( )A v µ v H v E A v y e t+ + ( )= 0,
(4)

cj cj cj tt cj cj t cj cj cj cj cj cj cj, , * * *

where Hcj denotes the initial force of the jth cable.

From the Hamilton’s variation procedure, the geometric
and mechanical boundary conditions of cable and SA can
also be obtained as follows:

Figure 1 Double-cable-stayed shallow-arch model with elastic supports at both ends and initial configuration of bridge deck included.
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v t(0, ) = 0, (5)cj

E I v t k v t(0, ) (0, ) = 0, (6)a a a a* 3 *

E I v L t k v L t( , ) + ( , ) = 0, (7)a a a a* 4 *

[ ]

E I v t k v t

E A L v y v s v t y t

(0, ) + (0, )

1 1
2

+ d (0, ) + (0, ) = 0, (8)

a a a a

a a

L

a a a a a

* 1

0

2* * * * *

[ ]

E I v L t k v L t

E A L v y v s v L t y L t

( , ) ( , )

1 1
2

+ d ( , ) + ( , ) = 0. (9)

a a a a

a a

L

a a a a a

* 2

0

2* * * * *

In Eqs. (8) and (9), the last term denotes the vertical
component of the axial force of the SA, which can be ne-
glected due to its small effect [27,35]. In addition, the dis-
placements of the cable and SA at sj should satisfy the
following relationship:
v s t u l t( , )sin + ( , ) = 0, (10)a j j cj cj

v s t v l t( , )cos + ( , ) = 0. (11)a j j cj cj

Substituting Eq. (10) into Eq. (3) yields

e t
v s t

l l y v v x( ) =
( , )sin

+ 1 + 1
2

d . (12)cj
a j j

cj cj

l

cj cj cj j
0

* * 2*

cj

The following non-dimensional quantities are defined to
deduce the dimensionless form of the equations of motion of
this system:

x
x
l t y

y
l v

v
l

v v
L

L
l s s

L y y
L

µ
µ
A µ µ

A

A L
E I

E A
H

A l
H

F s
F s
A L

E A
A L

A L
I

k
k L
E I k

k L
E I k

k L
E I k

k L
E I

f f
L

= , = , = , = ,

= , = , = , = ,

= , = , = ,

= , = , = ,

( ) =
( )

, = , = ,

= , = , = , = ,

= , = 1.0 rad s .

(13)

j
j

cj
cj

cj

cj
cj

cj

cj

a
a

cj
cj

a
a

cj
cj

cj cj a
a

a a

a
a a

a a cj
cj cj

cj cj
cj cj cj

cj

a a
cj

cj cj

a a

a
a

a a a a a a a a

a
a

0

0 0 0

4 0
2 4

2 0
2 2

1
1

0
2

0
2 2

2

1
1

3

2
2

3

3
3

4
4

0
1

The resulting non-dimensional equations of motion are

v v y v s v y µ v v

s s e F

1 1
2

+ d ( + )+ +

= ( ) ( )sin + cos , (14)

a
a

a
a a a a a a a a

j
j cj cj j

4 4
0

1
2 , ,

=1

2

1

( )v µ v v v y e+ 1 + + ( ) = 0. (15)cj cj cj
cj

cj cj cj cj cj, , 2

The non-dimensional linear forms of Eqs. (5)-(9) and (11)
are
v (0, ) = 0, (16)cj

v k v(0, ) (0, ) = 0, (17)a a3

v k v(1, ) + (1, ) = 0, (18)a a4

v k v y v sy(0, ) + (0, ) d (0, ) = 0, (19)a a a a a1
0

1

v k v y v sy(1, ) 1, ) d (1, ) = 0, (20)a a a a a2
0

1

v s v( , )cos + (1, ) = 0. (21)cj a j j cj

The non-dimensional form of Eq. (12) is

e v s y v v x( ) = ( , )sin + +
1
2

d . (22)cj cj a j j cj cj cj j
0

1
2

SA is divided into three segments according to the number
of cables to obtain the mode shapes of the system. To con-
duct a modal analysis, the nonlinear, damping and excitation
terms in Eqs. (14) and (15) are neglected and the linearized
form of equations of motion for each SA segment and cable
are obtained as:

v v

y v s y v s y v s y

+

= d + d + d , (23)

ak a ak
s

a a
s

s

a a
s

a a a

4
,

0
1 2

1

3

1

1

2

2

v v y e ( ) = 0, (24)cj cj cj cj cj cj
2

,

where k = 1, 2, 3, and

e v y v x( ) = (1, )tan + d . (25)cj cj j cj cj j
0

1

After the SA is segmented, the left and right sides of Node
sj shall match the following relationships.
(1) Mechanical equilibrium conditions:

E I v s t E I v s t

E A e t H v l t

E A e t v l t y l

( , ) ( , )

+ ( )sin + ( , )cos

+ ( ) ( , ) + ( ) cos = 0. (26)

aj aj a j a j a j a j j

cj cj cj j cj cj cj j

cj cj cj cj cj cj cj j

( +1) ( +1) ( +1)

The non-dimensional form of Eq. (26) can be written as:
v s v s e

v e y

( , ) ( , ) + ( )sin

+ 1 (1, )cos + ( ) (1)cos = 0, (27)

j a j j a j j cj j

cj
cj j cj cj j

+1 ( +1)

where E I L E A= ( ) / ( )j aj aj cj cj
2 and E I= ( ) /j a j a j+1 ( +1) ( +1)

L E A( )cj cj
2 .
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(2) Displacement continuity conditions:
v s v s v s

v s v s
v s

( , ) = ( , ),  ( , )

= ( , ),  ( , )
= ( , ). (28)

aj j a j j aj j

aj j j aj j

a j j

( +1)

( +1)

( +1)

To formulate the eigenvalue problem, the separation-of-
variables method has been applied, i.e.,

[ ]
[ ]

v s v x= ( )exp i( / ) ,  = ( )

exp i( / ) ,

(29)ak ak cj cj j0

0

where i denotes 1 .
Based on assumption (b), the equilibrium equation of the

cable can be expressed as:

( )y d x x= 4 1 , (30)cj cj j j

where dcj is rise-to-span ratio of the cable.

Substituting Eqs. (29) and (30) into (23)-(25) yields

y s y s y s y= d + d + d , (31)ak a ak

s

a a
s

s

a a
s

a a a
4

0
1 2

1

3

1

1

2

2

d e+ = 8 , (32)cj cj cj cj cj cj
2

e y x= (1)tan + d , (33)cj cj j cj cj j
0

1

where A L E I= ( ) / ( )a a a a a
4 2 4 and A l H= ( ) /cj cj cj cj cj

2 2 2 .
The solutions for Eqs. (31) and (32) are well-known and

they are expressed as:
s a s a s

a s a s a h
( ) = cos + sin

+ cosh + sinh + , (34)
ak k a k a

k a k a k

1 2

3 4 5

x c x c x D( ) = sin + cos + , (35)cj j cj j cj jc1 2

where h is a particular solution of Eq. (31), which can be
taken as h s= sin [36].

In Eq. (35), D jc follows the following expression:

D c c= + , (36)jc j j j j1 1 2 2

where
d

d

d

d

d

d

=
8

8 tan

4
2(1 cos )

sin + sin tan ,

=
8

8 tan

cos tan 4 1 + cos
2sin

.

(37)

j
cj cj

cj cj cj j

cj
cj

cj
cj cj j

j
cj cj

cj cj cj j

cj j cj cj
cj

cj

1 2

2 2

Meanwhile, substituting Eq. (29) into boundary, equili-
brium and continuity conditions (Eqs. (16)-(21), (27) and
(28)) yields

(0) = 0, (0) = 0, (38)c c1 2

k(0) (0) = 0, (39)a a1 3 1

k(1) + (1) = 0, (40)a a3 4 3

k

y s y s y s y

(0) + (0)

d + d + d (0) = 0, (41)

a a
s

a a
s

s

a a
s

a a a

1 1 1

0
1 2

1

3

1

1

2

2

k

y s y s y s y

(1) (1)

d + d + d (1) = 0, (42)

a a
s

a a
s

s

a a
s

a a a

3 2 3

0
1 2

1

3

1

1

2

2

s
s

( )cos + (1) = 0, 
( )cos + (1) = 0,

(43)c a c

c a c

1 1 1 1 1

2 2 2 2 2

s s

e y

(( ) ( )

+ sin + (1)cos + 1 (1)cos = 0, (44)

a a

c c c c

1 1 1 2 2 1

1 1 1 1
1 1 1

s s

e y

( ) ( )

+ sin + (1)cos + 1 (1)cos = 0, (45)

a a

c c c c

2 2 2 3 3 2

2 2 2 2
2 2 2

s s s s s s( ) = ( ), ( ) = ( ), ( ) = ( ),
(46)

a a a a a a1 1 2 1 2 2 3 2 1 1 2 1

s s s s s s( ) = ( ), ( ) = ( ), ( ) = ( ).
(47)

a a a a a a2 2 3 2 1 1 2 1 2 2 3 2

Equation (34) is required to satisfy Eq. (31), from which
we can obtain three equations. Therefore, the 19 equations,
including Eqs. (38)-(47), can be rewritten in the matrix form
as:

TZ = 0, (48)

where c c c c a a a a a aZ = [ , , , , , ..., , , ..., , , ..., ]11 12 21 22 11 15 21 25 31 35
T.

And the elements in T are provided in Appendix A. Ac-
cording to the Cramer’s Rule, if there are nontrivial solutions
of Eq. (48), there must be

T=| |=0, (49)

which is the eigenvalue equation of the system. With the help
of numerical software, the numerical solutions of Eq. (49)
can be easily obtained.
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3. Perturbation technique and modulation
equations

The process of solving the nonlinear system is tedious.
Hence, for the sake of the reader’s understanding, a flow
chart is given as shown in Fig. 2. It should be noted that in
this part, the model with only vertical elastic supports is
taken as an example to discuss the nonlinear vibration of the
system, since both vertical and rotational elastic supports
essentially affect the nonlinear characteristics of the system
by changing the shape function. Compared with multi-mode
models, single-mode models are adopted when the con-
cerned mode is not involved in an internal resonance with
other modes, namely the response can be considered to
consist of only the excited mode. This paper studied one-to-
one-to-one internal resonance between the lowest modes of
the shallow and cable. Hence, non-dimensional forms of the
planar transverse displacements of the SA and cables can be
expressed as:

v s s g( , ) = ( ) ( ), (50)a a

v x v s x x q( , ) = ( , ) cos( ) + ( ) ( ), (51)cj j cj a j j j cj j j

where s( )a and x( )cj j denote the mode shapes of the SA and
the jth cable, respectively. g( ) and q ( )j denote the corre-
sponding generalized coordinates. Substituting Eqs. (50) and
(51) into (14), (15) and (22) and applying the Galerkin dis-
cretization, the following ODEs are obtained:

g µ g b g b g b g b q b gq b q

b gq b q b q b

+ + + + + + +

+ + + + cos( ) = 0, (52)
a, , 11 12

2
13

3
14 1 15 1 16 2

17 2 18 1
2

19 2
2

110

q µ q b g b g b g b q

b g b gq b q b g q

b gq b q

+ + + + +

+ + + +

+ + = 0, (53)

j cj j j j j j j

j j j j j j j

j j j j

, , (+1)1 , (+1)2 , (+1)3 ( +1)4

( +1)5
2

( +1)6 ( +1)7
2

( +1)8
2

( +1)9
2

( +1)10
3

where the coefficients presented in Eqs. (52) and (53) are
provided in Appendix B.

In the following analysis, the method of multiple time
scales is employed to solve the ODEs. First, a small but finite
book keeping parameter ε and new independent time vari-
ables T T= ,  =0

0
2

2 are introduced. In order to balance
the damping, excitation and nonlinear terms, μa, b13, b110,
μcj, b(j+1)1, b(j+1)2 and b(j+1)m (m = 8, 9, 10) are replaced with

µa
2 , b2

13, b2
110, µcj

2 , b j
2

( +1)1, b j
2

( +1)2 and b j m
2

( +1) ,
respectively. b12, b1n (n = 4, 5,…, 9), b(j+1)3 and b(j+1)(m−3) are
replaced with b12, b n1 (n = 4, 5,…9), b j( +1)3 and

b j m( +1)( 3), respectively. Then, by omitting the overbar, Eqs.
(52) and (53) can be rewritten as:

g µ g g b g b g b q b gq

b q b gq b q b q

b

+ + + + + +

+ + + +

+ cos( ) = 0, (54)

a a,
2

,
2

12
2 2

13
3

14 1 15 1

16 2 17 2 18 1
2

19 2
2

2
110

q µ q b g b g b g

q b g b gq b q b g q

b gq b q

+ + + +

+ + + + +

+ + = 0, (55)

j cj j j j j

j j j j j j j j j

j j j j

,
2

,
2

( +1)1 ,
2

( +1)2 , ( +1)3

2
(+1)5

2
(+1)6 (+1)7

2 2
(+1)8

2

2
( +1)9

2 2
( +1)10

3

where j = 1, 2. b b b= , = , =a
2

11 1
2

24 2
2

34 and they re-
present natural frequencies of the SA and two cables, re-
spectively. To apply a second order approximation, the
solutions of g and qj are uniformly expanded in power series
of ε as:

g g T T O

q q T T O

= ( , ) + ( ), 

= ( , ) + ( ),
(56)i

i
i

j
i

i
ji

=1

3
1

0 2
3

=1

3
1

0 2
3

where, T0 is the fast time scale and T2 is the slow time scale.
Substituting Eq. (56) into Eqs. (54) and (55) and equating the
terms of like order in ε yield

D g

D q

: ( + ) = 0,

( + ) = 0,
(57)a

j j

0
0
2 2

1

0
2 2

1

Figure 2 The flow chart of the solution process.
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D g b g b q b g q b q b g q b q b q

D q b g b g b g q b q

: ( + ) = ( + + + + + + ),

( + ) = ( + + + ),
(58)a

j j j j j j j j

1
0
2 2

2 12 1
2

14 11 15 1 11 16 21 17 1 21 18 11
2

19 21
2

0
2 2

2 ( +1)3 1 ( +1)5 1
2

( +1)6 1 1 ( +1)7 1
2

]
D g µ D g D D g b g g b g b q b g q b g q b q

b g q b g q b q q b q q b T

D q b D g b D g µ D q D D q b g b g g

b g q b g q b q q b g q b g q b q

: ( + ) = + 2 + 2 + + + + +

+ + + 2 + 2 + cos( ) ,

( + ) = ( + + + 2 + + 2

+ + + 2 + + + ),

(59)

a a

j j j j cj j j j j

j j j j j j j j j j j j j

2
0
2 2

3 0
1

1 0
1

2
1

1 12 1 2 13 1
3

14 12 15 1 12 15 2 11 16 22

17 1 22 17 2 21 18 11 12 19 21 22 110 0

0
2 2

3 ( +1)1 0
1

1 ( +1)2 0
2

1 0
1

1 0
1

2
1

1 ( +1)3 2 ( +1)5 1 2

( +1)6 1 2 ( +1)6 2 1 ( +1)7 1 2 ( +1)8 1
2

1 ( +1)9 1 1
2

( +1)10 1
3

where Dn
m is a differential operator and it is defined as

D T= /n
m m

n(m = 1, 2 and n = 0, 2).

The solutions to Eq. (57) are well-known and they can be
expressed as:

g A T T cc= ( )exp(i )+ , (60)a1 1 2 0

q A T T cc= ( )exp(i )+ , (61)j j j1 +1 2 0

where A T( )m 2 (m = 1, 2, 3) are complex-valued amplitudes of

the modes and will be determined by imposing the solva-
bility conditions. cc denotes the complex conjugate of the
preceding terms at the right hand. As time goes on, the
homogeneous solutions of Eq. (58) will disappear, leaving
only the particular solutions. By substituting Eqs. (60) and
(61) into Eq. (58), the solutions for Eq. (58) can be obtained.
This paper focuses on one-to-one-to-one internal resonance
among the modes of the SA and two cables when primary
resonance of the SA occurs. Hence, substituting the solutions
for Eq. (58) and Eqs. (60) and (61) into Eq. (59) yields

[ ]
[ ] [ ]

[ ]
[ ]
[ ] [ ]
[ ] [ ]

D g b T T µ A T D A T A

T A B T A A B T A B

T A A B T A A B T A B

T A B T A A B T A B
T A A B T A A B

T A B T A B

T A A B T A B

T A A B T A A B T A B cc

( + ) = 1
2 exp(i ) iexp(i ) 2iexp(i ) + exp(i )

+exp(i ) + exp(i ) + exp i (2 )

+exp(i ) + exp i ( + ) + exp i (2 )

+exp i (2 ) + exp(i ) + exp(i )
+exp i ( + ) + exp(i )

+exp i (2 ) + exp i (2 )

+exp i ( + ) + exp i (2 )

+exp(i ) + exp(i ) + exp(i ) + NST + , (62)

a a a a a a a

a a

a a

a a

a

a

a

a

0
2 2

3 110 0 0 1 0 2
1

1 0 11 1

0 12 1
2

1 0 1 13 1 2 1 0 1 14 2
2

1

0 2 15 1 3 1 0 1 2 16 2 3 1 0 2 17 3
2

1

0 1 18 1
2

2 0 19 1 2 2 0 1 110 2
2

2

0 1 2 111 1 3 2 0 2 112 2 3 2

0 2 1 113 3
2

2 0 2 114 1
2

3

0 1 2 115 1 2 3 0 1 2 116 2
2

3

0 117 1 3 3 0 1 118 2 3 3 0 2 119 3
2

3 1

D q T µ A T D A b T A
T A T A T A

T A B T A A B

T A B T A A B

T A A B T A B

T A B T A A B

T A B T A A B

T A B T A B

T A A B T A A B

T A A B cc

( + ) = iexp(i ) 2iexp(i ) i exp(i )
+exp(i ) + exp(i ) + exp(i )

+exp(i ) + exp(i )

+exp i (2 ) + exp(i )

+exp i ( + ) + exp i (2 )

+exp i (2 ) + exp(i )

+exp(i ) + exp i ( + )

+exp i (2 ) + exp i (2 )

+exp i ( + ) + exp(i )

+exp(i ) + NST + , (63)

j j j cj j j j j j j a a

a j j j j j j j

a j j j j

j a j j j j j

j j a j j j j a j j

a j j j a j j j

j j j j a j j j j j

j j j j j a j j j

a j j j j j a j j j

j j j j j j

0
2 2

3 0 +1 0 2
1

+1 ( +1)1 0 1

0 ( +1)1 1 0 ( +1)2 +1 0 +1 ( +1)3 +2

0 ( +1)4 1
2

1 0 ( +1)5 1 +1 1

0 ( +1)6 +1
2

1 0 +1 ( +1)7 1 +2 1

0 +1 ( +1)8 +1 +2 1 0 +1 ( +1)9 +2
2

1

0 ( +1)10 1
2

+1 0 ( +1)11 1 +1 +1

0 ( +1)12 +1
2

+1 0 +1 ( +1)13 1 +2 +1

0 +1 ( +1)14 +2
2

+1 0 +1 ( +1)15 1
2

+2

0 +1 ( +1)16 1 +1 +2 0 ( +1)17 1 +2 +2

0 ( +1)18 +1 +2 +2 +1

521475-7X. Su, et al. Acta Mech. Sin., Vol. 38, 521475 (2022)



where B T( )m 2 denote the complex conjugates of A T( )m 2 and
j = 1, 2. It should be noted that when j = 2, j + 2 should be set
as 2 and j+1 should be set as 1. NSTm represents non-
secular terms and mn(m = 1, 2, 3; n = 1, 2, …, 19) are
provided in Appendix C. The external and internal resonance
conditions are controlled by the detuning parameters σ,σ1 and
σ2, namely

= + ,  = + ,  = + . (64)a a a
2

1
2

1 2
2

2

The polar form of Am(T2) (m = 1,2,3) can be expressed as:

A T a T T( ) = 1
2 ( )exp i ( ) , (65)m m m2 2 2

where am and m are the amplitude and phase angle of Am,
respectively. By substituting Eq. (65) into Eqs. (62) and (63)
and separating the real and imaginary parts, the autonomous
modulation equations in the polar form can be obtained as:

[ ] [
] [

]

a µ a b a a a a a

a a a a a

a a a a a a a

8 = 4 4 sin + sin + sin ( ) + sin(2 )

+ sin sin( 2 ) + sin + sin(2 )

+ sin + sin ( ) + sin(2 ) + sin( )

+ sin( + ) sin( ) , (66)

a a a1, 1 110 1 110 2
3

2 1
2

2 2 13 18 14 1 2
2

2

2 3
2

118 2 113 2 3 119 3
3

3 2
2

3 116 2 3

112 3 1
2

3 3 15 114 17 1 3
2

3 1 2 3 115 2 3

16 2 3 111 2 3

[ ] [ ]
[ ]
[ ]

a a a b a a a

a a a a a

a a a a a a a a

a a a a

8 = (4 + 8 ) + 4 cos + cos + cos ( + )

+ + cos(2 ) + cos + cos( 2 ) + cos

+ + cos(2 ) + cos( )( + ) + cos( + )

+ cos(2 ) + cos( ) + ( + )cos , (67)

a a1 1, 11 1 12 1
3

110 1 110 2
3

2 1
2

2 2 13 18

1 2
2

19 14 2 2 3
2

118 2 113 2 3 119 3
3

3

1 3
2

117 17 3 1 2 3 2 3 111 115 1 2 3 16 2 3

2
2

3 116 2 3 112 3 1
2

3 114 15 3

a µ a a a b

a a a a a

a a a a

a a a a a

a a a

8 = 4 sin (4 cos + 4 sin )

+ sin ( ) sin(2 ) 4 sin( )

sin + sin( 2 ) sin(2 2 )

sin( ) + sin( + ) + sin

sin(2 )+ sin , (68)

j j cj j j j j j a j j j

j j j j j j j j j j j

j j j j j j j j j j j

j j j j j j j j j j j

j j j j j j j

+1, +1 ( +1)4 1
3

+1 1 ( +1)1 +1 ( +1)1 +1

1 +1
2

+1 ( +1)6 ( +1)11 ( +1)10 1
2

+1 +1 ( +1)3 +2 +1 +2

1 +2
2

( +1)17 +1 ( +1)9 +1 +2 ( +1)14 +1 +2
2

+1 +2

1
2

+2 ( +1)7 +1 +2 ( +1)15 +1 +2 1 +1 +2 ( +1)8 +2

1 +1 +2 ( +1)13 +1 +2 ( +1)16 +2

}

[ ]
[ ]
[ ] {
[ ]

[ ]
[ ]

[ ]
[ ]

a a a a b a a

a a

a a a

a a a a

a a a a

a a

a a a a

a a a a b

a a a

a a a

a a a

8 = (4 4 + 8 ) 4 cos cos

+ ( cos + cos cos cos )

+ cos + cos(2 )

+ + cos(2 ) + cos

cos + cos( 2 ) cos( )

+ cos + cos( 2 ) + cos( + )

4 cos( ) + cos(2 ) + cos

+ cos cos(2 ) + (4 sin 4 cos )

+ ( cos cos cos )

+ cos2 + cos(2 2 )

+ cos( ) + cos( ) + cos( + ) , (69)

a a a a

a a

a a

a

a a a

a

a

a a a

a a

a a

1 1 2 2, 11 1 22 1 1 1 2 110 1 2 1 24 1
4

2

1
2

2
2

13 1 2 18 1 2 211 2 26 2

110 1 2
4

2 1
3

2 12 1 25 210 2

1 2
3

19 1 212 14 1 2 119 1 2 3
3

3

1
2

3
2

217 2 29 2 3 1
3

3 27 2 3

2
2

3
2

118 1 2 113 1 2 3 215 2 3

23 1 3 2 3 2
3

3 116 1 2 3 112 1 3

1
2

2 3 15 1 3 213 2 3 1
2

21
2

2 21 2

1
2

2 3 114 1 3 216 3 28 3

1 2 3
2

17 1 3 218 117 1 214 2 3

1 2
2

3 111 1 2 3 115 1 2 3 16 1 2 3
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}

[ ]
[ ]
[ ] {
[ ]

[ ]

[ ]
[ ]

a a a a b a a

a a

a a a

a a a a

a a a a

a a

a a a a

a a a a b

a a a

a a a

a a a

8 = (4 4 + 8 ) 4 cos cos

+ ( cos + cos cos cos )

+ cos + cos(2 )

+ + cos(2 ) + cos

cos + cos(2 ) cos( )

+ cos + cos(2 ) + cos( + )

4 cos( ) + ( cos( 2 ) + cos )

+ cos cos( 2 ) + (4 sin 4 cos )

+ ( cos cos cos )

+ cos2 + cos(2 2 )

+ cos( ) + cos( ) + cos( + ) , (70)

a a a a

a a

a a

a

a a a

a

a

a a a

a a

a

2 1 3 3, 11 2 32 2 2 1 3 110 2 3 1 34 1
4

3

1
2

3
2

114 2 3 15 2 3 311 3 36 3

119 2 3
4

3 1
3

3 12 2 35 310 3

1 3
3

117 2 312 17 2 3 110 2 3 2
3

2

1
2

3
2

317 3 39 2 3 1
3

2 37 2 3

2
2

3
2

112 2 2 116 2 2 3 315 2 3

33 1 2 2 3 3
3

2 113 2 2 3 118 2 2

1
2

2 3 18 2 2 313 2 3 1
2

31
2

3 31 3

1
2

2 3 13 2 2 316 2 38 2

1 2 3
2

14 2 2 318 1 19 2 314 2 3

1 2
2

3 111 2 2 3 115 2 2 3 16 2 2 3

where
T T T= , = + , = + .1 2 1 2 1 2 1 2 3 2 2 1 3

The steady-state equilibrium solutions of Eqs. (66)-(70)
can be determined by letting a a a= = =1, 2, 3,

= = = 01, 2, 3, . Using the Newton-Raphson method,
one of the equilibrium solutions can be obtained. Starting
with the point obtained by the Newton-Raphson method, the
frequency-/force-response curves are extracted through the
pseudo arc-length algorithm [37]. The stability of the equi-
librium solutions can be checked by evaluating whether the
real part of each eigenvalue is negative or not [38]. Due to the
complexity caused by the nonlinearity, the allowable solu-
tions of the system may be many; however, only typical
solutions are discussed in this study.

4. Numerical results and discussion

In this section, based on the obtained theoretical solutions,
the dynamic behaviors of a cable-stayed bridge are presented
and discussed. A bridge model shown in Fig. 1 is considered
here. It is symmetrical and the two cables are exactly iden-
tical with the length of lc = 200 m. The total length of the SA
is L = 300 m, and the lengths of each SA segment are 90 m,
120 m and 90 m, respectively. The physical parameters are
as follows. For the cables: mass per unit length mc = 48.62
kg/m, cross-sectional area Ac = 7.8×10−3 m2, Young’s mod-
ulus Ec = 2.1×1011 Pa, initial force of the cable Hc = 4 MN,
and acute angle between the cable and the horizontal axis θ1 =
θ2 = π/6. For the SA: mass per unit length ma = 16877 kg/m,
cross-sectional area Aa = 2.15 m2, Young’s modulus Ea =
2×1011 Pa, and moment inertia of cross section Ia = 1.2 m4.
Based on the above parameters, the values of some key
variables are given in Table 1. Moreover, the initial deflec-
tion of the SA is expressed as ya = fa sin(πs). fa is non-
dimensional rise of the SA, which is used to adjust the fre-

quencies of global modes to satisfy various internal re-
sonance relationships under different vertical stiffness. It can
be seen from Eqs. (41) and (42) that k1 and k2 affect the
modal (trial) functions through boundary conditions, thereby
affecting the nonlinear behaviors of the model. Hence, in the
following, a detailed analysis of the nonlinear phenomena
will be conducted under the following three different com-
binations of k1 and k2: (1) Case 1: k1 = k2 = 10

6; (2) Case 2: k1
= k2 = 104; and (3) Case 3: k1 = 104, k2 = 106.

4.1 Case 1: nonlinear analysis when k1 = k2 = 106

In this section, the model with ideal boundaries (i.e., H-H
ends) is simulated and its nonlinear behaviors are in-
vestigated. For the H-H ends, k1 = k2→∞. Here, k1 and k2 are
assumed to be 106 and the corresponding stiffness is 8.89 ×
109 N/m. The circular frequencies of the SA and cables are
4.37 and 4.54, respectively. fa is taken as 0.035 to satisfy the
internal resonance relationship.
The frequency-response curves are obtained by the pseudo

arc-length algorithm and presented in Fig. 3. In the following
figures, SN, HB and PF denote saddle-node, Hopf and
pitchfork bifurcations, respectively. Stable solutions are de-
picted by solid lines and unstable by dashed lines. In order to
validate the obtained theoretical results, the Runge-Kutta
method is also applied by integrating directly Eqs. (52) and
(53). As illustrated in Fig. 3, the results obtained from the
theoretical derivation are well aligned with the numerical
simulation results. It should be noted that the higher ampli-
tude values are not easy to obtain, as one needs to know their
domains of attraction.
In Fig. 3a, the frequency-response curve of the SA bends to

Table 1 Key parameters of the SA and cables

SA cables

β a η ψcj λ cj βcj
4.88531 161250 1.07839 409.5 0.69728
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the left and exhibits as a softening spring characteristic,
which leads to multivalued amplitudes. When σ increases
from a relatively small value, the amplitude of the response
increases slowly until SN1 is reached, where the tangent of
the curve is vertical. At this moment, slowly increasing σ
beyond SN1 will cause a sudden jump from the lower branch
to the upper branch, which is the so-called jump phenom-
enon. After that, a1 decreases with an increase in σand loses
its stability via HB1, while regaining stability at HB2. Dif-
ferent from a1, a2 (a3) increases with an increase in σ after
HB1. This may be because the SA transfers energy to cables
due to the deck-cable modal interaction [39]. Conversely, as
σ is reduced from a relatively large value, the jump phe-
nomenon also takes place via SN2 (see Fig. 3b). From that
point on, a1, a2 and a3 increase gradually with a decrease in σ.
By examining the curve carefully, it is found that there are no
stable solutions in a small range between SN2 and HB1 (see
the enlarged part in Fig. 3a), which means that if a frequency
(i.e., σ)sweeping experiment is conducted, there is no way to
find a stable solution within a small frequency interval. This
may be related to the amount of energy that the model ab-
sorbs from the external excitation.
In Fig. 3b, there exist two peaks. One bends to the left and

the other bends to the right. This is a double-jump phe-
nomenon, which has also been observed in previous work
[25,40]. Due to the double-jump phenomenon, the cables
may vibrate with different amplitudes. That is to say, both of
the amplitudes of the two cables belong to the upper branch
or lower branch, depending on the initial conditions. Com-
paring Fig. 3a and b, it can be seen that the SA and cables
exhibit different nonlinear behaviors at SN2. As σ is reduced
from a relatively large value, a1 jumps down to the lower
branch from the upper branch, while a2 (a3) jumps up to the
upper branch from the lower branch. This is consistent with
the phenomenon observed in the Ref. [26]. In addition, an
interesting phenomenon is observed in Fig. 3a. In the first
half of the upper right branch, the stable solution is above the
unstable solution, while in the second half, it is below the

unstable solution, as illustrated in the enlarged parts in Fig.
3a. The reason may be that as σ is increased, the excitation
frequency is far away from the primary resonance region,
thereby making the amplitude of the SA drop sharply. In
addition, the response amplitudes of cables are much greater
than those of the SA, which is consistent with large vibra-
tions of cables in practice. This is because the SA provides a
forced and parametric excitation at the lower end of the
cable. In this case, even small excitation amplitude will cause
a large vibration of the cables. The above observations and
discussion reveal, at least to some extent, the reason why the
large vibrations of cables take place in a real-world bridge.
In order to explore the effects of the excitation on non-

linear behaviors of the model, the frequency-response curves
with different excitation amplitudes are depicted, as illu-
strated in Fig. 4. It can be seen that the response amplitudes
of the SA and cables increase with an increase in excitation
amplitude. When σ falls into the interval of [−0.6,0.6], the
amplitudes increase obviously. However, when σ falls into
the interval of [−1.5,−0.6] and [0.6,1.5], the increase in
amplitudes is not so obvious and the lower branches of the
cables are almost zero. The higher absolute value of σ cor-
responds to the lower possibility of the primary resonance.
Therefore, the response amplitudes are not sensitive to the
changes in excitation amplitudes. As shown in Fig. 4, the
distance between two SNs (i.e., SN1 and SN2, SN3 and SN4,
SN5 and SN6) becomes smaller as the excitation amplitude
decreases. The SNs gradually shift to the lower right when
σ< 0 and to the lower left when σ> 0. Moreover, the distance
between two HBs (i.e., HB1 and HB2, HB3 and HB4) be-
longing to the same branch becomes smaller, and there are no
HBs any more in the frequency-response curves when F =
0.001, as expected. Although HBs disappear, new branch
point (PF1) appears (see Fig. 5), which is different from the
phenomenon in the Ref. [26]. Due to the existence of PFs,
there are as many as three stable solutions when σis relatively
large. It should be noted that the two stable branches of the
SA caused by PF1 overlap. There are actually two stable

Figure 3 The frequency-response curves with excitation amplitude F = 0.005 and σ1 = σ2 = 0.167: a for SA and b for cables.
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branches, which are very close to each other. It can be
concluded that with the decrease in excitation amplitude,
HBs will disappear but new branches take place and the
nonlinear behaviors of the model become more complicated.
Keeping the excitation frequency (i.e., σ)fixed to a certain

value and sweeping the excitation amplitude, the force-re-
sponse curves are obtained, as presented in Figs. 6 and 7. It
can be seen from Fig. 6 that the jump phenomenon triggered
by SNs also occurs. When the value of F is relatively small,
the lower branch increases with an increase in σ. However,
when the value of F is relatively large, the upper branch
decreases with an increase in σ,which is induced by softening
spring characteristic. With the increase in σ, the range of
unstable solutions between two SNs (i.e., SN1 and SN2, SN3
and SN4, SN5 and SN6) gradually narrows and the two SNs
gradually shift to the lower left. When σgoes up to a certain
value, say σ= 0, the two SNs are merged together and all the
unstable solutions disappear, leaving only the stable solu-
tions, as illustrated in Fig. 6. It is noted that the conditions
leading to multivalued phenomenon are different. For σ =
−0.6, as long as F is less than 0.014, multivalued phenom-
enon will occur and for σ= −0.3, it is 0.0047. However, for σ

= −0.1, the value of Fmust be very small (less than 0.00068)
in order for the multivalued phenomenon to take place. This
indicates that when σ is less than zero, the increase in σwill
make the multivalued phenomenon more difficult to occur.
The above conclusions are in accordance with those in Fig. 4,
and they can be mutually correlated with each other.
Figure 7 presents the force-response curves when σ= 0.6.

As shown in Fig. 7b and d, the amplitudes of the cables are
relatively small but still much larger than those of the SA.
The branch exhibits a linear relationship between response
and excitation amplitude, with no nonlinear characteristics.
However, the other branches are relatively complicated, as
illustrated in Fig. 7a and c. When F is reduced from a rela-
tively large value, response amplitudes decrease corre-
spondingly until PF is reached and three new branches are
generated via PF, which is not found in the Ref. [26]. After
PF, an interesting phenomenon can be observed. For the
cables, as F decreases, one of the branches further decreases,
losing its stability via SN1, and the stable solutions are below
the unstable ones. Another branch loses its stability via SN2
and the stable solutions are above the unstable ones. Hence,
for the SA, there are actually two almost identical branches

Figure 4 The frequency-response curves with different excitation amplitudes and σ1 = σ2 = 0.167: a for SA and b for cables.

Figure 5 The frequency-response curves with excitation amplitude F = 0.001 and σ1 = σ2 = 0.167: a for SA and b for cables.
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that overlap each other. The solutions of third branch are all
unstable, and SN3 does not change their stability. After SN3,
a1 goes up to the upper right, and a2 (a3) goes down to the
lower right. The above phenomena may be induced by dif-
ferent vibration mechanisms. After all, there exist different
terms in Eqs. (52) and (53). Furthermore, Fig. 7c once again
reveals the multivalued phenomenon.

4.2 Case 2: nonlinear analysis when k1 = k2 = 104

This section presents the nonlinear behaviors of the model
with moderate vertical stiffness. It is well-known that the
bridge bearings are usually elastic and compressible to en-

sure a certain allowable displacement of the bridge. Gen-
erally, the vertical stiffness of the bearings is about in the
magnitude order of 107. Hence, k1 and k2 are chosen to be in
the magnitude of 104 and the corresponding stiffness is 8.89
× 107 N/m. The circular frequencies of the SA and cables are
4.49 and 4.54, respectively. fa is taken as 0.048 to satisfy the
internal resonance relationship.
In order to explore the effect of vertical stiffness on the

nonlinear behaviors of the model, the frequency-response
curves of the SA and cables with different vertical stiffness
are presented, as illustrated in Fig. 8. It can be seen that due
to the reduction in vertical stiffness, the response amplitudes
decrease accordingly. It is because when k1 = k2 = 104, the

Figure 6 The force-response curves when σ≤ 0 and σ1 = σ2 = 0.167: a for SA and b for cables.

Figure 7 The force-response curves with σ= 0.6 and σ1 = σ2 = 0.167: a, b for SA and c, d for cables.
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vertical elastic constraints dissipates a part of the energy, just
like a spring. Obviously, the influence of vertical stiffness on
the response amplitudes of cables is greater than that of the
SA, which is interesting. This shows that the vertical stiff-
ness has an important influence on the nonlinear behaviors of
the cable. The reason may be that some of the energy that
should be transferred to the cable is dissipated by the spring.
In Fig. 8b, another interesting phenomenon is observed. The
reduction of vertical stiffness does not work on the lower
branches of the solution, but has a great impact on the upper
branches, which is directly related to the large vibrations of
the cables, and the nonlinear vibrations of the cables, as the
key in the nonlinear dynamics of the cable-stayed bridge,
should attract due attention. In addition, with the decrease in
vertical stiffness, the frequency range between two SNs (i.e.,
SN1 and SN2, SN3 and SN4) narrows and HBs gradually
move to the lower left. Simultaneously, new branch points
occur (see the PF in Fig. 9). Recall that there is no PF in Fig.
3, which indicates that the reduction of vertical stiffness
makes the nonlinear behaviors of the model more complex.
However, in most cases, the boundary conditions are gen-
erally regarded as H-H end, which may ignore some im-
portant nonlinear phenomena.

Figure 10 presents the force-response curves with different
vertical stiffness and σ. It shows that all the stable solutions
in the case when k1 = k2 = 104 are smaller than those in the
case when k1 = k2 = 10

6. The reason is the same as that in Fig.
8. The jump phenomenon takes place again and with the
reduction of vertical stiffness, SN1 gradually moves out-
ward, which means that for a given F, there may be multi-
valued amplitudes when k1 = k2 = 104, but only a single
amplitude when k1 = k2 = 106. Apparently, the response
amplitudes of cables change more obviously, indicating that
the vertical stiffness has a greater impact on the force-re-
sponse of cables. The mass of cables is much smaller than
that of the SA. Therefore, a slight change in energy will make
a difference in the nonlinear behaviors of the cable. Figure 11
presents the force-response curves when σ= 0.6, from which
a linear branch is also observed. With the decrease in vertical
stiffness, the SNs and PFs gradually move to the upper right.
Moreover, by comparing Fig. 11a and c, it is observed that
the response amplitude when k1 = k2 = 10

4 is smaller than that
when k1 = k2 = 106 (see Fig. 11a), while the conclusion is
opposite in Fig. 11c, which is different from other figures.
The reason may be that the cable gains more energy from SA
to maintain its large vibration, although elastic constraints

Figure 8 The frequency-response curves with different vertical stiffness when excitation amplitude F = 0.005: a for SA and b for cables.

Figure 9 The frequency-response curves with k1 = k2 = 104 when excitation amplitude F = 0.005 and σ1 = σ2 = 0.051: a for SA and b for cables.
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consume a part of the energy.

4.3 Case 3: nonlinear analysis when k1 = 104 and
k2 = 106

In actual cable-stayed bridges, there may be some differ-
ences in the vertical stiffness of the bearings at both ends. In
this case, the trial function of the SA exhibits asymmetrical
characteristic and the internal resonance of the SA can be
aroused [27]. Therefore, it is significant to study the non-
linear behaviors of the model with different stiffness at both
ends. To this end, in this section, k1 = 104 and k2 = 106 are

applied. The corresponding stiffness is 8.89 × 107 N/m and
8.89 × 109 N/m, respectively. The circular frequencies of the
SA and cables are 4.40 and 4.54, respectively. fa is taken as
0.04 to satisfy the internal resonance relationship.
Figure 12 presents the frequency-response curves of the

SA and cables with different vertical stiffness. It should be
noted that SNs and HBs are not marked in the diagram be-
cause they are not the focus of this section. It can be seen that
the upper branches differ a lot compared with the cases
where k1 = k2 = 10

6 and k1 = k2 = 10
4. The frequency-response

curve of the SA experiences great growth, which indicates
that more energy is allocated to the SA from the external

Figure 10 The force-response curves with different vertical stiffness when σ≤ 0: a for SA and b for cables.

Figure 11 The force-response curves with different vertical stiffness when σ= 0.6: a, b for SA and c, d for cables.
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excitation. Due to the different vertical stiffness at both ends,
the structure is no longer symmetrical, and thus the fre-
quency-response curves of the two cables are different. As
shown in Fig. 12b, when k1 = 104 and k2 = 106, the upper
branch of the frequency-response curve is between those of
the other two curves, while it is the highest in Fig. 12c. The
reason may be that the amount of energy transferred from the
SA to the two cables is different and Cable 2 gains more
energy. Or the energy is transferred between the two cables
and Cable 1 transfers its energy to Cable 2 through the SA.
Figure 13 presents the frequency-response curves when

k1 = 104 and k2 = 106 more clearly. In Fig. 13, no PF is
observed, while new HBs occur and there are four HBs in
total. For the lower branch when σ> 0.4, the stable solutions
of a2 are pretty close to the unstable solutions, which is
different from a3. The above phenomenon indicates that the
difference in vertical stiffness at both ends leads to new
nonlinear behaviors of the model.
Figure 14 presents the force-response curves with different

vertical stiffness when σ< 0. Since the upper branches have
been discussed in Fig. 12, only the lower branches will be
discussed here. It can be seen from Fig. 14a that the ampli-
tude in the case when k1 = 104 and k2 = 106 is the largest.
However, as shown in Fig. 14b, the amplitude in the case

when k1 = 10
4 and k2 = 10

6 is almost equal to that in the case
when k1 = k2 = 104. In Fig. 14c, the amplitude in the case
when k1 = 10

4 and k2 = 10
6 is between those in the other two

cases (i.e., k1 = k2 = 10
6 and k1 = k2 = 10

4). The reason for the
above phenomenon may be that the SA is allocated more
energy and Cable 2 gains a medium amount of energy, being
compared with the other two cases. However, Cable 1 does
not gain extra energy compared with the case where k1 = k2 =
104. Figure 15 presents the force-response curves with dif-
ferent vertical stiffness when σ= 0. It shows that Fig. 15 and
the upper branches in Fig. 14 are similar. Actually, they all
correspond to the upper branches in Fig. 12.
Figure 16 presents the linear branches with different ver-

tical stiffness when σ= 0.6. It can be observed that when k1 =
104 and k2 = 106, the amplitudes of both cables are all be-
tween those in the other two cases, which is different from
Fig. 14. This reveals another way of energy transfer among
the SA and cables. Figure 17 presents another branch with k1
= 104 and k2 = 10

6 when σ= 0.6. It shows that there are no PFs
but SNs. Due to the disappearance of PFs, each graph in Fig.
17 has only one branch and the branches of which the so-
lutions are all unstable disappear. Since the vertical stiffness
on the side of Cable 1 is smaller (k1 = 104), the elastic con-
straint will absorb a part of energy. Hence, compared with

Figure 12 The frequency-response curves with different vertical stiffness when excitation amplitude F = 0.005: a for SA, b for cable 1 and c for cable 2.

Figure 13 The frequency-response curves with k1 = 10
4 and k2 = 10

6 when excitation amplitude F = 0.005 and σ1 = σ2 = 0.141: a for SA, b for cable 1 and c
for cable 2.
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the corresponding force-response curves in the other two
cases, Cable 1 retains the lower branch (see Fig. 17b) and

Cable 2 retains the upper branch (see Fig. 17c). This is in-
duced by different boundary conditions and similar phe-

Figure 14 The force-response curves with different vertical stiffness when σ= −0.6: a for SA, b for cable 1 and c for cable 2.

Figure 15 The force-response curves with different vertical stiffness when σ= 0: a for SA, b for cable 1 and c for cable 2.

Figure 16 The force-response curves with different vertical stiffness when σ= 0.6: a for SA, b for cable 1 and c for cable 2.
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nomena are not observed in the Ref. [26].

5. Conclusions

In order to obtain the nonlinear dynamics of cable-stayed
bridges more accurately, a double-cable-stayed shallow-arch
model with elastic supports at both ends and the initial
configuration of the bridge deck included in the modeling is
developed in this study. The in-plane one-to-one-to-one in-
ternal resonance among global and local modes are studied
when external primary resonance occurs. First, considering
the boundary and continuous conditions, the separation-of-
variable method is applied to solve the in-plane eigenvalue
problem of the model. The obtained modal function is taken
as the trial function of the SA and Galerkin’s method is used
to discrete differential equations of motion. In this way, a set
of ODEs are derived. To solve the ODEs, the method of
multiple time scales is utilized. Then, the stable equilibrium
solutions of modulation equations are obtained by the
Newton-Raphson method and the frequency-/force-response
curves are extracted by the pseudo arc-length algorithm. In
order to explore the influence of vertical stiffness on the
dynamic behaviors of the system, the nonlinear analyses
under three different combinations of k1 and k2 are carried out
systematically. The following conclusions are drawn.
(1) The double-jump phenomenon is observed in the fre-

quency-response curves of the cables. With the decrease in
excitation amplitude, HBs disappear. However, new PFs are
firstly observed in the frequency-force-response curves. Due
to the existence of the PF, there are as many as three stable
solutions when σ is relatively large. The SNs that do not
separate stable equilibria from unstable equilibria are firstly
observed in the force-response curves.
(2) The vertical stiffness has a greater influence on the

cables, especially the large vibrations of the cables. More-
over, the vertical stiffness can change the nonlinear beha-

viors of the model, such as the numbers and types of
bifurcations. Since a part of energy is dissipated by elastic
constraints, the response amplitudes of the SA and cables
decrease with the reduction of vertical stiffness.
(3) When the vertical stiffness at two ends is different, the

frequency-force-response curves of the SA and cables are
quite different from those in the other two cases. There is a
redistribution of energy among the SA and cables. Overall,
the asymmetry caused by the different stiffness makes the
SA obtain more energy, while the nonlinear behaviors of the
cables are more complicated. The energy obtained by the
cables can be either large or small, depending on different
energy transfer mechanisms.
(4) When the vertical stiffness at two ends is different, the

PFs in the frequency-response curves disappear, but there are
more HBs. Due to the disappearance of PFs, there is only one
branch left in the force-response curve of Cable 1 (Cable 2)
and Cable 1 retains the lower branch, while Cable 2 retains
the upper branch. It suggests that the boundary conditions do
have a significant influence on the nonlinear behaviors of the
bridge system.
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两端具有弹性支承双索浅拱模型的内共振分析
苏潇阳, 康厚军, 郭铁丁, 闫桂荣

摘要 在以往关于斜拉桥非线性动力学的研究中, 边界条件并没有被合适地模拟. 为了更准确地探索斜拉桥的非线性动力学特性,
论文考虑斜拉桥的初始构型, 建立了两端具有弹性支承的双索浅拱模型. 首先, 将浅拱根据拉索的数量分为三段, 对模型的面内特

征值问题进行求解, 并将求得的分段函数作为浅拱的试函数. 其次, 对浅拱发生主共振时全局模态和局部模态间的1:1:1内共振进行

研究. 采用伽辽金方法得到系统的常微分方程, 并通过多尺度法进行求解. 采用牛顿-拉夫逊方法得到调谐方程的稳定平衡解, 并给

出不同竖向刚度下模型的频率/力响应曲线, 从而对模型的非线性行为进行分析. 最后, 基于以上研究得出一些有意义的结论.
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