185 research outputs found

    Genetic polymorphisms of the GNRH1 and GNRHR genes and risk of breast cancer in the National Cancer Institute Breast and Prostate Cancer Cohort Consortium (BPC3)

    Get PDF
    RIGHTS : This article is licensed under the BioMed Central licence at http://www.biomedcentral.com/about/license which is similar to the 'Creative Commons Attribution Licence'. In brief you may : copy, distribute, and display the work; make derivative works; or make commercial use of the work - under the following conditions: the original author must be given credit; for any reuse or distribution, it must be made clear to others what the license terms of this work are.Abstract Background Gonadotropin releasing hormone (GNRH1) triggers the release of follicle stimulating hormone and luteinizing hormone from the pituitary. Genetic variants in the gene encoding GNRH1 or its receptor may influence breast cancer risk by modulating production of ovarian steroid hormones. We studied the association between breast cancer risk and polymorphisms in genes that code for GNRH1 and its receptor (GNRHR) in the large National Cancer Institute Breast and Prostate Cancer Cohort Consortium (NCI-BPC3). Methods We sequenced exons of GNRH1 and GNRHR in 95 invasive breast cancer cases. Resulting single nucleotide polymorphisms (SNPs) were genotyped and used to identify haplotype-tagging SNPs (htSNPS) in a panel of 349 healthy women. The htSNPs were genotyped in 5,603 invasive breast cancer cases and 7,480 controls from the Cancer Prevention Study-II (CPS-II), European Prospective Investigation on Cancer and Nutrition (EPIC), Multiethnic Cohort (MEC), Nurses' Health Study (NHS), and Women's Health Study (WHS). Circulating levels of sex steroids (androstenedione, estradiol, estrone and testosterone) were also measured in 4713 study subjects. Results Breast cancer risk was not associated with any polymorphism or haplotype in the GNRH1 and GNRHR genes, nor were there any statistically significant interactions with known breast cancer risk factors. Polymorphisms in these two genes were not strongly associated with circulating hormone levels. Conclusion Common variants of the GNRH1 and GNRHR genes are not associated with risk of invasive breast cancer in Caucasians.Published versio

    The Potential for Enhancing the Power of Genetic Association Studies in African Americans through the Reuse of Existing Genotype Data

    Get PDF
    We consider the feasibility of reusing existing control data obtained in genetic association studies in order to reduce costs for new studies. We discuss controlling for the population differences between cases and controls that are implicit in studies utilizing external control data. We give theoretical calculations of the statistical power of a test due to Bourgain et al (Am J Human Genet 2003), applied to the problem of dealing with case-control differences in genetic ancestry related to population isolation or population admixture. Theoretical results show that there may exist bounds for the non-centrality parameter for a test of association that places limits on study power even if sample sizes can grow arbitrarily large. We apply this method to data from a multi-center, geographically-diverse, genome-wide association study of breast cancer in African-American women. Our analysis of these data shows that admixture proportions differ by center with the average fraction of European admixture ranging from approximately 20% for participants from study sites in the Eastern United States to 25% for participants from West Coast sites. However, these differences in average admixture fraction between sites are largely counterbalanced by considerable diversity in individual admixture proportion within each study site. Our results suggest that statistical correction for admixture differences is feasible for future studies of African-Americans, utilizing the existing controls from the African-American Breast Cancer study, even if case ascertainment for the future studies is not balanced over the same centers or regions that supplied the controls for the current study

    IGF-1, IGFBP-1, and IGFBP-3 Polymorphisms Predict Circulating IGF Levels but Not Breast Cancer Risk: Findings from the Breast and Prostate Cancer Cohort Consortium (BPC3)

    Get PDF
    IGF-1 has been shown to promote proliferation of normal epithelial breast cells, and the IGF pathway has also been linked to mammary carcinogenesis in animal models. We comprehensively examined the association between common genetic variation in the IGF1, IGFBP1, and IGFBP3 genes in relation to circulating IGF-I and IGFBP-3 levels and breast cancer risk within the NCI Breast and Prostate Cancer Cohort Consortium (BPC3). This analysis included 6,912 breast cancer cases and 8,891 matched controls (n = 6,410 for circulating IGF-I and 6,275 for circulating IGFBP-3 analyses) comprised primarily of Caucasian women drawn from six large cohorts. Linkage disequilibrium and haplotype patterns were characterized in the regions surrounding IGF1 and the genes coding for two of its binding proteins, IGFBP1 and IGFBP3. In total, thirty haplotype-tagging single nucleotide polymorphisms (htSNP) were selected to provide high coverage of common haplotypes; the haplotype structure was defined across four haplotype blocks for IGF1 and three for IGFBP1 and IGFBP3. Specific IGF1 SNPs individually accounted for up to 5% change in circulating IGF-I levels and individual IGFBP3 SNPs were associated up to 12% change in circulating IGFBP-3 levels, but no associations were observed between these polymorphisms and breast cancer risk. Logistic regression analyses found no associations between breast cancer and any htSNPs or haplotypes in IGF1, IGFBP1, or IGFBP3. No effect modification was observed in analyses stratified by menopausal status, family history of breast cancer, body mass index, or postmenopausal hormone therapy, or for analyses stratified by stage at diagnosis or hormone receptor status. In summary, the impact of genetic variation in IGF1 and IGFBP3 on circulating IGF levels does not appear to substantially influence breast cancer risk substantially among primarily Caucasian postmenopausal women

    Vitamin D Receptor Polymorphisms and Breast Cancer Risk: Results from the National Cancer Institute Breast and Prostate Cancer Cohort Consortium

    Get PDF
    Background: Vitamin D is hypothesized to lower the risk of breast cancer by inhibiting cell proliferation via the nuclear vitamin D receptor (VDR). Two common single nucleotide polymorphisms (SNP) in the VDR gene ( VDR ), rs1544410 ( Bsm I), and rs2228570 ( Fok I), have been inconsistently associated with breast cancer risk. Increased risk has been reported for the Fok I ff genotype, which encodes a less transcriptionally active isoform of VDR , and reduced risk has been reported for the Bsm I BB genotype, a SNP in strong linkage disequilibrium with a 3′-untranslated region, which may influence VDR mRNA stability. Methods: We pooled data from 6 prospective studies in the National Cancer Institute Breast and Prostate Cancer Cohort Consortium to examine associations between these SNPs and breast cancer among >6,300 cases and 8,100 controls for each SNP using conditional logistic regression. Results: The odds ratio (OR) for the rs2228570 ( Fok I) ff versus FF genotype in the overall population was statistically significantly elevated [OR, 1.16; 95% confidence interval (95% CI), 1.04-1.28] but was weaker once data from the cohort with previously published positive findings were removed (OR, 1.10; 95% CI, 0.98-1.24). No association was noted between rs1544410 ( Bsm I) BB and breast cancer risk overall (OR, 0.98; 95% CI, 0.89-1.09), but the BB genotype was associated with a significantly lower risk of advanced breast cancer (OR, 0.74; 95% CI, 0.60-0.92). Conclusions: Although the evidence for independent contributions of these variants to breast cancer susceptibility remains equivocal, future large studies should integrate genetic variation in VDR with biomarkers of vitamin D status. (Cancer Epidemiol Biomarkers Prev 2009;18(1):297–305

    Joint effects of known type 2 diabetes susceptibility loci in genome-wide association study of Singapore Chinese: The Singapore Chinese health study

    Get PDF
    Background: Genome-wide association studies (GWAS) have identified genetic factors in type 2 diabetes (T2D), mostly among individuals of European ancestry. We tested whether previously identified T2D-associated single nucleotide polymorphisms (SNPs) replicate and whether SNPs in regions near known T2D SNPs were associated with T2D within the Singapore Chinese Health Study. Methods: 2338 cases and 2339 T2D controls from the Singapore Chinese Health Study were genotyped for 507,509 SNPs. Imputation extended the genotyped SNPs to 7,514,461 with high estimated certainty (r2>0.8). Replication of known index SNP associations in T2D was attempted. Risk scores were computed as the sum of index risk alleles. SNPs in regions ±100 kb around each index were tested for associations with T2D in conditional fine-mapping analysis. Results: Of 69 index SNPs, 20 were genotyped directly and genotypes at 35 others were well imputed. Among the 55 SNPs with data, disease associations were replicated (at p<0.05) for 15 SNPs, while 32 more were directionally consistent with previous reports. Risk score was a significant predictor with a 2.03 fold higher risk CI (1.69-2.44) of T2D comparing the highest to lowest quintile of risk allele burden (p = 5.72×10-14). Two improved SNPs around index rs10923931 and 5 new candidate SNPs around indices rs10965250 and rs1111875 passed simple Bonferroni corrections for significance in conditional analysis. Nonetheless, only a small fraction (2.3% on the disease liability scale) of T2D burden in Singapore is explained by these SNPs. Conclusions: While diabetes risk in Singapore Chinese involves genetic variants, most disease risk remains unexplained. Further genetic work is ongoing in the Singapore Chinese population to identify unique common variants not already seen in earlier studies. However rapid increases in T2D risk have occurred in recent decades in this population, indicating that dynamic environmental influences and possibly gene by environment interactions complicate the genetic architecture of this disease. © 2014 Chen et al

    Consistent Association of Type 2 Diabetes Risk Variants Found in Europeans in Diverse Racial and Ethnic Groups

    Get PDF
    It has been recently hypothesized that many of the signals detected in genome-wide association studies (GWAS) to T2D and other diseases, despite being observed to common variants, might in fact result from causal mutations that are rare. One prediction of this hypothesis is that the allelic associations should be population-specific, as the causal mutations arose after the migrations that established different populations around the world. We selected 19 common variants found to be reproducibly associated to T2D risk in European populations and studied them in a large multiethnic case-control study (6,142 cases and 7,403 controls) among men and women from 5 racial/ethnic groups (European Americans, African Americans, Latinos, Japanese Americans, and Native Hawaiians). In analysis pooled across ethnic groups, the allelic associations were in the same direction as the original report for all 19 variants, and 14 of the 19 were significantly associated with risk. In summing the number of risk alleles for each individual, the per-allele associations were highly statistically significant (P<10−4) and similar in all populations (odds ratios 1.09–1.12) except in Japanese Americans the estimated effect per allele was larger than in the other populations (1.20; Phet = 3.8×10−4). We did not observe ethnic differences in the distribution of risk that would explain the increased prevalence of type 2 diabetes in these groups as compared to European Americans. The consistency of allelic associations in diverse racial/ethnic groups is not predicted under the hypothesis of Goldstein regarding “synthetic associations” of rare mutations in T2D
    corecore