981 research outputs found

    Physician Practice Patterns and Variation in the Delivery of Preventive Services

    Get PDF
    BACKGROUND: Strategies to improve preventive services delivery (PSD) have yielded modest effects. A multidimensional approach that examines distinctive configurations of physician attributes, practice processes, and contextual factors may be informative in understanding delivery of this important form of care. OBJECTIVE: We identified naturally occurring configurations of physician practice characteristics (PPCs) and assessed their association with PSD, including variation within configurations. DESIGN: Cross-sectional study. PARTICIPANTS: One hundred thirty-eight family physicians in 84 community practices and 4,046 outpatient visits. MEASUREMENTS: Physician knowledge, attitudes, use of tools and staff, and practice patterns were assessed by ethnographic and survey methods. PSD was assessed using direct observation of the visit and medical record review. Cluster analysis identified unique configurations of PPCs. A priori hypotheses of the configurations likely to perform the best on PSD were tested using a multilevel random effects model. RESULTS: Six distinct PPC configurations were identified. Although PSD significantly differed across configurations, mean differences between configurations with the lowest and highest PSD were small (i.e., 3.4, 7.7, and 10.8 points for health behavior counseling, screening, and immunizations, respectively, on a 100-point scale). Hypotheses were not confirmed. Considerable variation of PSD rates within configurations was observed. CONCLUSIONS: Similar rates of PSD can be attained through diverse physician practice configurations. Significant within-configuration variation may reflect dynamic interactions between PPCs as well as between these characteristics and the contexts in which physicians function. Striving for a single ideal configuration may be less valuable for improving PSD than understanding and leveraging existing characteristics within primary care practices

    Helical Chirality: a Link between Local Interactions and Global Topology in DNA

    Get PDF
    DNA supercoiling plays a major role in many cellular functions. The global DNA conformation is however intimately linked to local DNA-DNA interactions influencing both the physical properties and the biological functions of the supercoiled molecule. Juxtaposition of DNA double helices in ubiquitous crossover arrangements participates in multiple functions such as recombination, gene regulation and DNA packaging. However, little is currently known about how the structure and stability of direct DNA-DNA interactions influence the topological state of DNA. Here, a crystallographic analysis shows that due to the intrinsic helical chirality of DNA, crossovers of opposite handedness exhibit markedly different geometries. While right-handed crossovers are self-fitted by sequence-specific groove-backbone interaction and bridging Mg2+ sites, left-handed crossovers are juxtaposed by groove-groove interaction. Our previous calculations have shown that the different geometries result in differential stabilisation in solution, in the presence of divalent cations. The present study reveals that the various topological states of the cell are associated with different inter-segmental interactions. While the unstable left-handed crossovers are exclusively formed in negatively supercoiled DNA, stable right-handed crossovers constitute the local signature of an unusual topological state in the cell, such as the positively supercoiled or relaxed DNA. These findings not only provide a simple mechanism for locally sensing the DNA topology but also lead to the prediction that, due to their different tertiary intra-molecular interactions, supercoiled molecules of opposite signs must display markedly different physical properties. Sticky inter-segmental interactions in positively supercoiled or relaxed DNA are expected to greatly slow down the slithering dynamics of DNA. We therefore suggest that the intrinsic helical chirality of DNA may have oriented the early evolutionary choices for DNA topology

    Microfluidic systems for the analysis of the viscoelastic fluid flow phenomena in porous media

    Get PDF
    In this study, two microfluidic devices are proposed as simplified 1-D microfluidic analogues of a porous medium. The objectives are twofold: firstly to assess the usefulness of the microchannels to mimic the porous medium in a controlled and simplified manner, and secondly to obtain a better insight about the flow characteristics of viscoelastic fluids flowing through a packed bed. For these purposes, flow visualizations and pressure drop measurements are conducted with Newtonian and viscoelastic fluids. The 1-D microfluidic analogues of porous medium consisted of microchannels with a sequence of contractions/ expansions disposed in symmetric and asymmetric arrangements. The real porous medium is in reality, a complex combination of the two arrangements of particles simulated with the microchannels, which can be considered as limiting ideal configurations. The results show that both configurations are able to mimic well the pressure drop variation with flow rate for Newtonian fluids. However, due to the intrinsic differences in the deformation rate profiles associated with each microgeometry, the symmetric configuration is more suitable for studying the flow of viscoelastic fluids at low De values, while the asymmetric configuration provides better results at high De values. In this way, both microgeometries seem to be complementary and could be interesting tools to obtain a better insight about the flow of viscoelastic fluids through a porous medium. Such model systems could be very interesting to use in polymer-flood processes for enhanced oil recovery, for instance, as a tool for selecting the most suitable viscoelastic fluid to be used in a specific formation. The selection of the fluid properties of a detergent for cleaning oil contaminated soil, sand, and in general, any porous material, is another possible application

    Impacts of Waste from Concentrated Animal Feeding Operations on Water Quality

    Get PDF
    Waste from agricultural livestock operations has been a long-standing concern with respect to contamination of water resources, particularly in terms of nutrient pollution. However, the recent growth of concentrated animal feeding operations (CAFOs) presents a greater risk to water quality because of both the increased volume of waste and to contaminants that may be present (e.g., antibiotics and other veterinary drugs) that may have both environmental and public health importance. Based on available data, generally accepted livestock waste management practices do not adequately or effectively protect water resources from contamination with excessive nutrients, microbial pathogens, and pharmaceuticals present in the waste. Impacts on surface water sources and wildlife have been documented in many agricultural areas in the United States. Potential impacts on human and environmental health from long-term inadvertent exposure to water contaminated with pharmaceuticals and other compounds are a growing public concern. This work-group, which is part of the Conference on Environmental Health Impacts of Concentrated Animal Feeding Operations: Anticipating Hazards—Searching for Solutions, identified needs for rigorous ecosystem monitoring in the vicinity of CAFOs and for improved characterization of major toxicants affecting the environment and human health. Last, there is a need to promote and enforce best practices to minimize inputs of nutrients and toxicants from CAFOs into freshwater and marine ecosystems

    A unifying mathematical framework for experimental TCR-pMHC kinetic constants

    Get PDF
    Receptor binding and triggering are central in Immunology as T cells activated through their T cell receptors (TCR) by protein antigens orchestrate immune responses. In order to understand receptor-ligand interactions, many groups working with different experimental techniques and assays have generated a vast body of knowledge during the last decades. However, in recent years a type of assays, referred to as two-dimensional or membrane-to-membrane, has questioned our current understanding of the role of different kinetic constants (for instance, on- versus off-rate constants) on TCR-ligand interaction and subsequent T cell activation. Here we present a general mathematical framework that provides a unifying umbrella to relate fundamental and effective (or experimentally determined) kinetic constants, as well as describe and compare state-of-the-art experimental methods. Our framework is able to predict the correlations between functional output, such as 1/EC50, and effective kinetic constants for a range of different experimental assays (in two and three dimensions). Furthermore, our approach can be applied beyond Immunology, and serve as a “translation method” for the biochemical characterization of receptor-ligand interactions

    Functional divergence in the role of N-linked glycosylation in smoothened signaling

    Get PDF
    The G protein-coupled receptor (GPCR) Smoothened (Smo) is the requisite signal transducer of the evolutionarily conserved Hedgehog (Hh) pathway. Although aspects of Smo signaling are conserved from Drosophila to vertebrates, significant differences have evolved. These include changes in its active sub-cellular localization, and the ability of vertebrate Smo to induce distinct G protein-dependent and independent signals in response to ligand. Whereas the canonical Smo signal to Gli transcriptional effectors occurs in a G protein-independent manner, its non-canonical signal employs Gαi. Whether vertebrate Smo can selectively bias its signal between these routes is not yet known. N-linked glycosylation is a post-translational modification that can influence GPCR trafficking, ligand responsiveness and signal output. Smo proteins in Drosophila and vertebrate systems harbor N-linked glycans, but their role in Smo signaling has not been established. Herein, we present a comprehensive analysis of Drosophila and murine Smo glycosylation that supports a functional divergence in the contribution of N-linked glycans to signaling. Of the seven predicted glycan acceptor sites in Drosophila Smo, one is essential. Loss of N-glycosylation at this site disrupted Smo trafficking and attenuated its signaling capability. In stark contrast, we found that all four predicted N-glycosylation sites on murine Smo were dispensable for proper trafficking, agonist binding and canonical signal induction. However, the under-glycosylated protein was compromised in its ability to induce a non-canonical signal through Gαi, providing for the first time evidence that Smo can bias its signal and that a post-translational modification can impact this process. As such, we postulate a profound shift in N-glycan function from affecting Smo ER exit in flies to influencing its signal output in mice

    Application of ecological momentary assessment in stress-related diseases

    Get PDF
    Many physical diseases have been reported to be associated with psychosocial factors. In these diseases, assessment relies mainly on subjective symptoms in natural settings. Therefore, it is important to assess symptoms and/or relationships between psychosocial factors and symptoms in natural settings. Symptoms are usually assessed by self-report when patients visit their doctors. However, self-report by recall has an intrinsic problem; "recall bias". Recently, ecological momentary assessment (EMA) has been proposed as a reliable method to assess and record events and subjective symptoms as well as physiological and behavioral variables in natural settings. Although EMA is a useful method to assess stress-related diseases, it has not been fully acknowledged, especially by clinicians. Therefore, the present brief review introduces the application and future direction of EMA for the assessment and intervention for stress-related diseases

    Ferromagnetic Semiconductors: Moving Beyond (Ga,Mn)As

    Full text link
    The recent development of MBE techniques for growth of III-V ferromagnetic semiconductors has created materials with exceptional promise in spintronics, i.e. electronics that exploit carrier spin polarization. Among the most carefully studied of these materials is (Ga,Mn)As, in which meticulous optimization of growth techniques has led to reproducible materials properties and ferromagnetic transition temperatures well above 150 K. We review progress in the understanding of this particular material and efforts to address ferromagnetic semiconductors as a class. We then discuss proposals for how these materials might find applications in spintronics. Finally, we propose criteria that can be used to judge the potential utility of newly discovered ferromagnetic semiconductors, and we suggest guidelines that may be helpful in shaping the search for the ideal material.Comment: 37 pages, 4 figure

    Synthesis of vancomycin fluorescent probes that retain antimicrobial activity, identify Gram-positive bacteria, and detect Gram-negative outer membrane damage

    Get PDF
    This is the final version. Available from Nature Research via the DOI in this record. All relevant data are available in this article, its Supplementary Information and Supplementary Data files (the source data behind the graphs in the paper is contained in Supplementary Data 2), except for original image files, which are available from the corresponding author upon reasonable request.Antimicrobial resistance is an urgent threat to human health, and new antibacterial drugs are desperately needed, as are research tools to aid in their discovery and development. Vancomycin is a glycopeptide antibiotic that is widely used for the treatment of Gram-positive infections, such as life-threatening systemic diseases caused by methicillin-resistant Staphylococcus aureus (MRSA). Here we demonstrate that modification of vancomycin by introduction of an azide substituent provides a versatile intermediate that can undergo copper-catalysed azide-alkyne cycloaddition (CuAAC) reaction with various alkynes to readily prepare vancomycin fluorescent probes. We describe the facile synthesis of three probes that retain similar antibacterial profiles to the parent vancomycin antibiotic. We demonstrate the versatility of these probes for the detection and visualisation of Gram-positive bacteria by a range of methods, including plate reader quantification, flow cytometry analysis, high-resolution microscopy imaging, and single cell microfluidics analysis. In parallel, we demonstrate their utility in measuring outer-membrane permeabilisation of Gram-negative bacteria. The probes are useful tools that may facilitate detection of infections and development of new antibiotics.Biotechnology & Biological Sciences Research Council (BBSRC)Engineering and Physical Sciences Research Council (EPSRC)Wellcome TrustMedical Research Council (MRC)Gordon and Betty Moore Foundation Marine Microbiology InitiativeNHMRCNHMRCNHMRCThe Royal SocietyChina Scholarship Council (CSC)University of QueenslandInstitute for Molecular BiosciencesQUEXGW
    corecore