2,056 research outputs found

    Disks in the Arches cluster -- survival in a starburst environment

    Get PDF
    Deep Keck/NIRC2 HK'L' observations of the Arches cluster near the Galactic center reveal a significant population of near-infrared excess sources. We combine the L'-band excess observations with K'-band proper motions, to confirm cluster membership of excess sources in a starburst cluster for the first time. The robust removal of field contamination provides a reliable disk fraction down to our completeness limit of H=19 mag, or about 5 Msun at the distance of the Arches. Of the 24 identified sources with K'-L' > 2.0 mag, 21 have reliable proper motion measurements, all of which are proper motion members of the Arches cluster. VLT/SINFONI K'-band spectroscopy of three excess sources reveals strong CO bandhead emission, which we interpret as the signature of dense circumstellar disks. The detection of strong disk emission from the Arches stars is surprising in view of the high mass of the B-type main sequence host stars of the disks and the intense starburst environment. We find a disk fraction of 6 +/- 2% among B-type stars in the Arches cluster. A radial increase in the disk fraction from 3 to 10% suggests rapid disk destruction in the immediate vicinity of numerous O-type stars in the cluster core. A comparison between the Arches and other high- and low-mass star-forming regions provides strong indication that disk depletion is significantly more rapid in compact starburst clusters than in moderate star-forming environments.Comment: 51 pages preprint2 style, 22 figures, accepted by Ap

    The orbital motion of the Arches cluster — clues on cluster formation near the galactic center

    Get PDF
    The Arches cluster is one of the most massive, young clusters in the Milky Way. Located inside the central molecular zone in the inner 200 pc of the Galactic center, it formed in one of the most extreme star-forming environments in the present-day Galaxy. Its young age of only 2.5 Myr allows us to observe the cluster despite the strong tidal shear forces in the inner Galaxy. The orbit of the cluster determines its dynamical evolution, tidal stripping, and hence its fate. We have measured the proper motion of the Arches cluster relative to the ambient field from Keck/NIRC2 LGS-AO and VLT/NAOS-CONICA NGS-AO observations taken 4.3 years earlier. When combined with the radial velocity, we derive a 3D space motion of 232 ± 30 km/s for the Arches. This motion is exceptionally large when compared to molecular cloud orbits in the GC, and places stringent constraints on the formation scenarios for starburst clusters in dense, nuclear environments

    Cross Sections for the Production of He+ (np) 2P0 States by 50 to 150 keV Proton Impact on Helium

    Full text link
    Cross sections have been measured for the production of He+ (np) 2Po states, n=2,3,4, by proton impact on helium over a projectile velocity range of 1.42–2.45 a.u. (50 ≤E≤150 keV). Cross sections were determined by measuring the extreme ultraviolet photons emitted from excited He1 ions. The data indicate a lower energy than expected for the maximum cross section. A comparison of the present results in terms of projectile energy dependance with the cross sections for excitation to He (1snp) 1Po, ionization, and total electron capture suggests the primary mechanism for the production of excited He+ at low energies is transfer excitation, with ionization excitation being the dominant mechanism at higher energies

    Non-adiabatic effects in long-pulse mixed-field orientation of a linear polar molecule

    Full text link
    We present a theoretical study of the impact of an electrostatic field combined with non-resonant linearly polarized laser pulses on the rotational dynamics of linear molecules. Within the rigid rotor approximation, we solve the time-dependent Schr\"odinger equation for several field configurations. Using the OCS molecule as prototype, the field-dressed dynamics is analyzed in detail for experimentally accessible static field strengths and laser pulses. Results for directional cosines are presented and compared to the predictions of the adiabatic theory. We demonstrate that for prototypical field configuration used in current mixed-field orientation experiments, the molecular field dynamics is, in general, non-adiabatic, being mandatory a time-dependent description of these systems. We investigate several field regimes identifying the sources of non-adiabatic effects, and provide the field parameters under which the adiabatic dynamics would be achieved.Comment: 16 pages, 16 figures. Submitted to Physical Review

    The orbital motion of the Quintuplet cluster - a common origin for the Arches and Quintuplet clusters?

    Get PDF
    We investigate the orbital motion of the Quintuplet cluster near the Galactic center with the aim of constraining formation scenarios of young, massive star clusters in nuclear environments. Three epochs of adaptive optics high-angular resolution imaging with Keck/NIRC2 and VLT/NACO were obtained over a time baseline of 5.8 years, delivering an astrometric accuracy of 0.5-1 mas/yr. Proper motions were derived in the cluster reference frame and were used to distinguish cluster members from the majority of field stars. Fitting the cluster and field proper motion distributions with 2D gaussian models, we derive the orbital motion of the cluster for the first time. The Quintuplet is moving with a 2D velocity of 132 +/- 15 km/s with respect to the field along the Galactic plane, which yields a 3D orbital velocity of 167 +/- 15 km/s when combined with the previously known radial velocity. From a sample of 119 stars measured in three epochs, we derive an upper limit to the velocity dispersion in the core of the Quintuplet cluster of sigma_1D < 10 km/s. Knowledge of the three velocity components of the Quintuplet allows us to model the cluster orbit in the potential of the inner Galaxy. Comparing the Quintuplet's orbit with the Arches orbit, we discuss the possibility that both clusters originated in the same area of the central molecular zone. [abridged]Comment: 40 pages, 12 figures, accepted for publication in Ap

    Auger Resonance Decay Process in Ar 2p Shell Excitation and Ionization

    Full text link
    The production and subsequent autoionization of the Ar+ (1D2)6d1 satellite state that is formed either by shake-up or recapture during the Auger decay of a 2p vacancy in Ar has been studied by photoelectron spectroscopy in the energy region from 243 to 256 eV. The creation of near zero energy electrons below and immediately above the Ar 2p ionization threshold is discussed. Some ambiguous points in previous studies are clarified

    Massive Star Formation

    Full text link
    The enormous radiative and mechanical luminosities of massive stars impact a vast range of scales and processes, from the reionization of the universe, to the evolution of galaxies, to the regulation of the interstellar medium, to the formation of star clusters, and even to the formation of planets around stars in such clusters. Two main classes of massive star formation theory are under active study, Core Accretion and Competitive Accretion. In Core Accretion, the initial conditions are self-gravitating, centrally concentrated cores that condense with a range of masses from the surrounding, fragmenting clump environment. They then undergo relatively ordered collapse via a central disk to form a single star or a small-N multiple. In this case, the pre-stellar core mass function has a similar form to the stellar initial mass function. In Competitive Accretion, the material that forms a massive star is drawn more chaotically from a wider region of the clump without passing through a phase of being in a massive, coherent core. In this case, massive star formation must proceed hand in hand with star cluster formation. If stellar densities become very high near the cluster center, then collisions between stars may also help to form the most massive stars. We review recent theoretical and observational progress towards understanding massive star formation, considering physical and chemical processes, comparisons with low and intermediate-mass stars, and connections to star cluster formation.Comment: Accepted for publication as a chapter in Protostars and Planets VI, University of Arizona Press (2014), eds. H. Beuther, R. Klessen, C. Dullemond, Th. Hennin

    Circumstellar discs in Galactic centre clusters: Disc-bearing B-type stars in the Quintuplet and Arches clusters

    Full text link
    We investigate the circumstellar disc fraction as determined from L-band excess observations of the young, massive Arches and Quintuplet clusters residing in the central molecular zone of the Milky Way. The Quintuplet cluster was searched for L-band excess sources for the first time. We find a total of 26 excess sources in the Quintuplet cluster and 21 in the Arches cluster, of which 13 are new detections. With the aid of proper motion membership samples, the disc fraction of the Quintuplet cluster was derived for the first time to be 4.0 +/- 0.7%. There is no evidence for a radially varying disc fraction in this cluster. In the case of the Arches cluster, a disc fraction of 9.2 +/- 1.2% approximately out to the cluster's predicted tidal radius, r < 1.5 pc, is observed. This excess fraction is consistent with our previously found disc fraction in the cluster in the radial range 0.3 < r < 0.8 pc. In both clusters, the host star mass range covers late A- to early B-type stars, 2 < M < 15 Msun, as derived from J-band photospheric magnitudes. We discuss the unexpected finding of dusty circumstellar discs in these UV intense environments in the context of primordial disc survival and formation scenarios of secondary discs. We consider the possibility that the L-band excess sources in the Arches and Quintuplet clusters could be the high-mass counterparts to T Tauri pre-transitional discs. As such a scenario requires a long pre-transitional disc lifetime in a UV intense environment, we suggest that mass transfer discs in binary systems are a likely formation mechanism for the B-star discs observed in these starburst clusters.Comment: 47 pages, 22 figures, accepted by A&

    Degree-constrained spanners for multidimensional grids

    Get PDF
    AbstractA spanning subgraph S = (V, E′) of a connected simple graph G = (V, E) is a f (x) -spanner if for any pair of nodes u and v, ds(u, v) ⩽ f (dG(u, v)) where dG and ds are the usual distance functions in graphs G and S, respectively. The delay of the f (x) -spanner is f(x) − x. We construct four spanners with maximum degree 4 for infinite d-dimensional grids with delays 2d − 4, 2⌈d2⌉ + 2[(d − 2)/4] + 2, 2⌈(d − 6)/8⌉ + 4⌈d + 1)/4⌉+ 6, and ⌈(⌈d/2⌉ + 1)/ (1 + 1)rl + 2⌈ d2⌉ + 21 + 2. All of these constructions can be modified to produce spanners of finite (d-dimensional grids with essentially the same delay. We also construct a (5d + 4 + x) -spanner with maximum degree 3 for infinite d-dimensional grids. This construction can be used to produce spanners of finite d-dimensional grids where all dimensions are even with the same delay. We prove an Ω(d) lower bound for the delay of maximum degree 3 or 4 spanners of finite or infinite d-dimensional grids. For the particular cases of infinite 3- and 4-dimensional grids, we construct (6 + x) -spanners and (14 + x) -spanners, respectively. The former can be modified to construct a (6 + x) -spanner of a finite 3-dimensional grid where all dimensions are even or where all dimensions are odd and a (8 + x) -spanner of a finite 3-dimensional grid otherwise. The latter yields (14 + x) -spanners of finite 4-dimensional grids where all dimensions are even

    High Resolution Spectroscopy of CF3Br by Diode Laser in the Frequency Range 1070–1090 cm−1

    Get PDF
    The IR absorption spectra of gaseous CF3Br expanded in a molecular jet have been recorded with a linewidth of about 0.002 cm−1. The rotational K-structure of the ν1 fundamental has been resolved and the molecular constants ΔB and ΔA have been determined with an accuracy better than 5 x 10−6 cm−1. Spectral features belonging to the ν6- and ν3-hotbands have been identified. For CF3B79r (CF3B81r) improved values of the vibrational origins for the fundamental ν1 = 1084.768(2) cm−1 (1084.520(2) cm−1) and for its hotbands ν3+ν1←ν3 = 1081.709(80) cm−1 (1081.065(40) cm−1) and ν6+ν1←ν6 = 1083.533(4) cm-1 (1083.288(4) cm-1) have been determined
    corecore