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Abstract 

A spanning suhgraph S = (V, E’) of a conncctcd simple graph G = (I’. E) is a f’(r) -sptrnr~ if 
for any pair of nodes IA and 11. ds(u. L.) ~j’(d~(~. 11)) where dc; and ds are the usual distance 
functions in graphs G and S. respectively. The tleluy of the j(x) -spanner is j(x) ~ y. We 

construct four spanners with maximum degree 4 for infinite &dimensional grids with 
delays 2d - 4, 2rd2l+ q(d - 2)/41+ 2, zr(d - 6):81 + q(d + 1);41+ 6. and r(rtr21 + I), 
(I + I )1-t 2r&71+ 21-t 2. All of these constructions can he modified to produce spanners of 
finite d-dimensional grids with essentially the same delay. We also construct a (%I + 4 + Y/ 
-spanner with maximum degree 3 for infinite d-dimensional grids. This construction can he uszd 
to produce spanners of finite d-dimensional grids where all dimensions are even with the same 
delay. We prove an R(d) lower hound for the delay of maximum degree 3 or 4 spanners of tinite 
or infinite &dimensional grids. For the particular cases of infinite 3- and 4-dimensional grids. 
we construct (6 + _I) -spanners and (14 + x) -spanners, respectively. The former can he modilied 
to construct a (6 + x) -spanner of a finite i-dimensional grid where all dimensions are even or 
where all dimensions are odd and a (8 + x) -spanner of a finite 3-dimensional grid otherwise. 
The latter yields (14 + s) -spanners of finite 4-dimensional grids where all dimensions arc even. 

1. Introduction and definitions 

There are several popular topologies used for constructing parallel computers. Our 

goal is to determine substructures of such topologies with smaller maximum degree. 
We require also that these substructures, called spc~nnrrs, have the property that the 

distance between two vertices in the substructure is not significantly larger than the 

corresponding distance in the original structure. 

A network is represented by a connected simple graph G = (V, E). We use the 

notation &(u, C) to denote the distance between vertices 11 and L’ in G. The maximum 
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degree of G is denoted AC and the average degree is denoted 6o. The subscript G may 

be omitted if it is clear from context. Liestman and Shermer introduced a general 

definition of graph spanner in [Z]: A spanning subgraph S of a connected simple 

graph G is anf(x) -spanner if for any pair of nodes 11 and L’, ds(m, ~1) <f(do(~, t;)). We 

call ds(u, 2)) - dG(u, v) the delay between vertices u and L’ in S, denoted d$(u, u). For an 

f(u) -spanner S, we letf’(.x) =f(_~) - . Y and refer tofl(.x) as the Delano of the spanner. 

Note thatf’(s) is an upper bound (but not necessarily a tight bound) on the maximum 

delay in S between any pair of vertices at distance x in G. 

It may be possible to express the delayf’(x) in several ways. Although any spanner 

S of a finite graph G is an (x + C) -spanner where c is the maximum delay between any 

pair of vertices in S, a more careful analysis of S may reveal a closer relationship 

between the distance in G and the delay in S. For example. the (.u + c) -spanner 

mentioned above may also be determined to be a 2s-spanner. In general, we prefer to 

expressf(x) in a manner that bounds the delay as clearly as possible. 

Spanners were introduced by Peleg and Ullman [S]. who used these structures in 

order to simulate efficiently synchronous networks on asynchronous networks. Vari- 

ous aspects of spanners have been investigated in recent papers [l-3, 7, 91. Our 

particular interest here is in spanners of multidimensional grids. 

Liestman and Shermer [4] described how to construct low average degree (t + x) 

-spanners for ‘-dimensional grids, X-trees, and pyramids. In particular, for 2-dimen- 

sional grids, they constructed spanners with maximum degree 4 and low average 

degree. They introduced the concept of highways and constructed spanners of infinite 

grids which could be modified to produce spanners of finite grids. By including all of 

the edges in every lth row and every kth column, highways are created which allow 

long distances to be covered with no delay. By specifying the detailed connections of 

other vertices to the highways, they obtained spanners for both infinite and finite grids 

with delays 21 - 4 + 2L(k - I)/2 J and 2k + 2r l/21 - 3 + .K and average degree 

e2 + 2/((1 - l)(k - 1)). In addition, they showed that, for any integer t 3 1, to 

determine whether a given graph G and integer m, whether G has a (t + x) -spanner 

with nz or fewer edges is NP-complete. 

In [S], Liestman and Shermer studied spanners of ‘-dimensional grids, X-trees, and 

pyramids with smaller maximum degree. In the particular case of 2-dimensional grids, 

they showed how to construct two different types of (1.25,/3x + 6 + 6 + s)- 

spanners with maximum degree 3 (and different average degrees) for two-dimensional 

grids. Further. they established a lower bound that shows that the delay of these 

spanners is within a constant factor of optimal. 

In this paper, we show how to construct spanners with maximum degrees 3 and 4 of 

both infinite and finite d-dimensional grids for d > 2. We begin with a simple lower 

bound on the delay of such spanners in Section 2. In Section 3, we show how to 

construct four different spanners of the infinite d-dimensional grid (d > 2) with 

maximum degree 4. These can all be modified to yield spanners for finite grids with the 

same (or approximately the same) delay. In each case, the delay is a function of d but 

not of x. In Section 4, we describe a general method to construct grid spanners with 
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maximum degree 3 and we give a specific construction based on this general method. 

This construction can be modified to yield spanners for finite grids where all of the 

dimensions are even with the same delay. Again. this delay is a function of d but not of 

.Y. In Section 5, we describe two specific constructions which give spanners with 

maximum degree 3 for 3- and 4-dimensional infinite grids. These constructions yield 

lower delay than the construction of Section 4. The construction for 3-dimensional 

grids can be modified to produce spanners for finite grids with approximately the 

same delay. The construction for 4 dimensional grids can be modified to yield 

spanners for finite grids where all of the dimensions are even with the same delay. The 

delay of each of these spanners is within a constant factor of the lower bound. 

An infinite tl-dimensional grid, denoted Gtdj, has the vertex set 1’ = Zd. Its edges arc 

between pairs of vertices whose labels differ by 1 in exactly one position. that is, vertex 

(u,. ~1~. . . . . ~1~. . ud) is connected to exactly those vertices (~1,. u,, ._. , LQ, + 1. . udj 

and (u,, ~1~. . uk - 1. . . . . ud) where 1 < I, < d. A finite tl-dimensional grid. denoted 

G ,ll,ll_. ,~,,, is the induced subgraph of G,d) on vertices (~1,. ~1~. . u,~) with 

0 < 11~ < Q, - 1 for 1 < k < n. To avoid confusion, we will insist that 11~ 3 2 for each I<. 

2. A simple lower bound 

Proof. Consider a vertex ~3 in such a grid G. If G is a hypercube, at least half of the 

vertices of G are within distance d/2 of L’: that is. at least zd-l vertices are within 

distance d/2 of I’. If G is any other d-dimensional grid. the number of vertices within 

distance d/2 of I’ is at least as large. 

Let S be any spanner of G with maximum degree A and delay h. Let T,. be the depth 

tfj3 + b breadth-first search tree in S rooted at 2:. This tree must contain all vertices of 

G within distance d/3 of 1: in G. The tree T,., being of maximum degree A and depth 

cl,!2 + h, contains at most A((A - l)d”th - l)!(A - 3) + 1 vertices. 

Thus. 
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log(A-1) >log + (d - 2). 

d 
2 

z +b>, 
d 

log(A - 1) + log(A - 1)’ 

A-2 
log - 2 

b> i > 7 2d - 1) 

log(A - 1) 

+ dlog(A 

2log(A - l)- 21og(A - 1)’ 

b> 
(2 - log(A - 1))d 

log(A - 1) 

+ 
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When log(A - 1) < 2 (or, equivalently, A < 5), the delay b is in O(d). 0 

3. Construction of grid spanners with maximum degree 4 

In this section, we describe four different maximum degree 4 spanners of Gtli) and 

modifications which yield maximum degree 4 spanners of finite 4-dimensional grids. 

The first three constructions yield different delays and are each best for some 

particular range of d. The fourth construction has a lower delay than the others for 

most values of d, but requires more complicated routing. 

All four of the spanners constructed here are based on the idea of highways and 

interchanges as introduced in [4]. The idea is that there are highways (uninterrupted 

long paths) in each dimension which are connected by interchanges. To route between 

a pair of vertices, it is necessary to travel along the highways of the dimensions in 

which the addresses differ. Switching between highways is done by traveling on 

interchanges. 

To construct a maximum degree 4 path interchange spanner S of an infinite d- 

dimensional grid. GCd,, we connect every vertex (u[, u2, . . . , ud) to (~1~ + 1, u2, . . . , ud) 

and also to (ul, u?, . . . , ukml, uk + 1, ukil, . . . , ud) where (k - 2) = lr,mod(d - 1). For 

any integer j, the jth layer denotes the collection of vertices of the grid having first 

coordinate equal to j. In the path interchange spanner, each layer contains all of its 

dimension k edges for some 2 d k d d. Fig. 1 shows a 2-dimensional slice (dimensions 

1 and 2) of a path interchange spanner. 

Theorem 3.1. The path interchange spamer S is a (2d - 4 + x) -spanner of GCd, with 

As = 4 and & = 4. 

Proof. Given two vertices u = (ul, u2, . , ud) and D = (~1~. L:?, . . . , ud), d,(u, V) = 

If= 1 1 Lli - Gi(. We wish to bound the delay between u and v in S. Since S contains all 



:4 I4 :4 :4 

3 3 3 

LLLI 

3 

Fig. 1. A slice of a path interchange spanner showing dimension I vertically and dimcnslon 2 horizontally. 

Label i on a berteu indicates that the vertex is connected to ita ncighhors in dimension 1. 

edges of dimension 1, there is a path from u to I’ consisting of a path in dimension 

1 from 21 to 11’ = (L’,. uz, uj, . . ud), followed by a path from U’ to 1’. Thus. 

&u, 13) d &u’. 1’) + lu, - L.~I. Since &(u, V) = &(u’. I’) + 114, - rll. 41s(zr. I’) d d$(~‘, 1.). 

From vertex U’ = (rl, ~1~. ~4~. . . . . u,,), we can move in dimension i = I’, 

mod(d - 1) + 2 without delay. In particular, we can move from ~1’ = (rl. 1/L> . 

uj....,If,l) t0 (2’1.142,....l4j~1, L’i.Llj+l,.... 14~) using exactly l[li ~ ~~1 edges. From this 

vertex, we move to (rl + 1. L12, . . u_ 1. l’i, ui+ 1. . . ud) using 1 edge. From this vertex. 

we can move in dimensionj = (cI + 1) mod(tl - 1) + 2 without delay. Note that ,j will 

be either i + 1 or 2. (The latter occurs when i = tl.) 

As before. we move until the coordinate in dimension j is L’? By performing (d - 1) 

iterations of this process of stepping positively one edge in dimension 1 and then 

1~1, - 1’,1 edges in dimension LY, we eventually arrive at L.’ = ([‘! + (tl - 3). L’?. ___ . I.,,). 

From L.‘. we follow (II - 3) edges in dimension 1 to arrive at I’. 

The length of this path from U’ to I’ is z:=, 1~~ ~ rk/ + ?(d - 2) = ?(tl - 2) + 

dG(ll’, I’). Thus, d$(u’, ~1) < 2d - 4, I&( II, 1.) < 311 - 4. and thus. for any- .Y. 

f’(r) < 21 - 4. 0 

We can easily construct a finite version of this spanner for any finite d-dimensional 

grid. 
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Proof. Let G’ = Gn,,n2, . nd be a finite d-dimensional grid and S’ be the subspanner of 

the d-dimensional path interchange spanner S induced by the vertices of G’. If 

n1 3 2d - 3, then the analysis in the above proof holds for S’, except when 

ci > (ni - 1) -(d - 1). In this case, one cannot step positively (d - 2) times in 

dimension 1 as required by the description of the path. However, by substituting 

negative steps in dimension 1 for positive ones (and vice versa), we stay within the grid 

and the same analysis holds. 

We can view the constructed path as a cycle of length 2d - 2 in dimension 

1 interspersed with one single-dimensional path Pk in each other dimension k. It is not 

necessary that all of the P,‘s are grouped at the beginning of the cycle. In fact, any 

cycle in dimension 1 that encounters (d - 1) distinct dimension 1 coordinates can be 

used in the construction, inserting the Pk appropriately. In particular, we can use any 

cycle that consists of I dimension 1 edges in the positive direction followed by (d - 1) 

dimension 1 edges in the negative direction followed by (d - 1 - 1) dimension 1 edges 

in the positive direction. Thus, we can relax our requirement of ~ri 3 2d - 3 in our 

analysis of the delay of S’ to ~zi 3 d - 1. In fact, as long as ni > d - 1 for some 

1 < i < d, we can construct a path interchange spanner with the same delay bound by 

exchanging dimensions i and 1. 0 

To construct a maximum degree 4 cq’cle interchanye spanner S of the infinite d- 

dimensional grid. Gtd,, we begin by connecting every vertex (ul, u2, . . , ud) to 

(ui + 1, ~1~. . , ud). When u2 is even, we connect (ui, u?, . . . , ud) to (ui, z12, . . . , 

&-I.& + l,uk+l, . . . . ud) where k = ui(modrd/21) + 2. When ~1~ is odd. we consider 

three cases: If ui = O(modrd/21), then we connect (ui_ u2. u3. , ud) to 

(111. 112 + 1, 113, . . . , ud). If u1 = [d/21 - l(modrd/21) and d is odd, we add no further 

connections to (Ui, U2. ... , Ud). Otherwise. we connect (ur. u2, . , ud) to 

(Ul, u,. . . . . Uk-1, uk + 1, &+l. . . . . ud) where k = u1(modrd/21) + [d/21 + 1. Fig. 2 

shows a 2-dimensional slice (dimensions 1 and 2) of a cycle interchange spanner. 

Theorem 3.2. The cycle interchange spanner S is a (2rd/21 + 2r(d - 2)/41 + 2 + x)- 
spanner of’ Gfd, bvith As = 4 and & = 4. 

Proof. Given two vertices u = (ui, u2, , ud) and v = (tlr, L’~, . . . , rd), dJu, v) = 

Cfz,[ui - L’il. We wish to bound the delay between u and u in S. Since S contains all 

edges of dimension 1, there is a path from u to L’ consisting of a path in dimension 

1 from u to u’ = (P,, u2, u3. . . . , ud), followed by a path from u’ to 11. Thus, 

ds(u, v) < dS(u’. v) + Iul - vlI. Since d&u, I)) = d&u’, U) + Iul - ~~1, ds(u, v) d dk(u’, v). 
From vertex u’, we move to 14” = (~1, t:?, u3, . . , ud) by taking 

b d [d/21/2 = [(d - 2)/41 d’ imension 1 edges to the nearest vertex with neighbors in 

dimension 2, followed by a path of Iu2 - c21 edges in dimension 2 and b more edges 

to UI’. 

We will construct a path from u” to L’ by interspersing single-dimensional paths in 

dimensions 3 through d into a short cycle. The cycle consists of 2 paths of [d/21 edges 
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Fig. 2 A slice of a cycle interchange spanner showing dimension 1 vertically and dimension 1 horizontally. 

Label i on a vertex indicates that the vertex is connected to its neighbors in dimension i. In (;II tl is even and 

in (b) d is odd. 

in dimension 1 joined on both ends by a single dimension 2 edge. Note that such 

a cycle will encounter a vertex with edges in dimension li for all 3 < k < (1. At each 

such vertex, we include the appropriate path of length 1~~ - rkl in dimension X. 

The total path length from II to I‘ is (u, - 1.~1 + (21 + /U~ - 1.~1) + 

7rt/,!21 + 2 + E;=,I~~ - L’kl = LiGtL1. t.) + 2h + 2rtj2j + 2 G (I(+, C) + 2rtt/ - 3):41 

+ qd,iq + 2. 0 

Proof. We assume that the dimensions have been permuted so that II, 3 r&21 + I. 
We could construct a finite cycle interchange spanner by simply taking an induced 

subspanner of the infinite cycle interchange spanner. However. if it,(mod rd,‘?l) is 

large. then vertices with the largest coordinate in dimension 1 would incur a large 

delay because they are far from all of the short cycles used in the paths from II” to P in 
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the proof of Theorem 3.2. Consequently, to construct a cycle interchange spanner for 

Gil,., z, _.,nd, we first shift the infinite cycle interchange spanner Lnl(modrd/2J)/2 J 

units positively in dimension 1, and then take the induced subspanner. The analysis is 

then the same as in Theorem 3.2 except that U” may not be on a short cycle. If this is 

the case. then the path described from U’ to U” (even if u = u”) contains a vertex with 

edges in both dimensions 1 and 2. This vertex is on a short cycle, and thus the short 

cycle (interspersed with single dimensional paths) can be spliced into the path at this 

point (rather than occuring after it). Thus, we arrive at the same delay bound of 

2rd/21+ 2r(d - 2)/41+ 2. 0 

There are several possible generalizations of the path interchange and cycle inter- 

change spanners. 

Note that paths in the path interchange spanner were described in terms of a cycle 

of dimension 1 edges interspersed with single dimensional paths in higher dimensions. 

Paths in the cycle interchange spanner were described in terms of a cycle of two paths 

of roughly d/2 dimension 1 edges joined by two dimension 2 edges. An obvious 

generalization is to construct a cycle of four paths of roughly d/4 dimension 1 edges 

joined by two dimension 2 edges and two dimension 3 edges. This generalization leads 

to a spanner that we call a folded cycle interchange spanner. 

To construct a maximum degree 4 folded cycle interchange spanner S of an infinite 

d-dimensional grid, Gtd,, we begin by connecting every vertex (ul, u2. . . . , ud) to 

(U1 + 1, U2, ,.. , ud). When u1 = O(mod [(d + 5)/41), we connect (ul. u2, . . . , ud) to 

(u,, 112 + 1, u3, . . , ud). When u1 = (r(d + 5)/41- 1) (mod[(d + 5)/41) we connect 

(ul, 112, . . . , ud) to (ul, ~1~. u3 + 1, uq, . . . , ud). Otherwise, we let k = (2(u3 mod2) + 

(u,mod2)) [(d - 3)/41+ u,mod [(d + 5)/41 f 2, and connect each vertex 

(&, u2, . . . , uk, . . . , &j) to (u1, u2, . . . , L(k + 1, . . . , ud), if li < d. A crucial point in the 

analysis of this generalized spanner is to note that vertices with edges in dimension 

2 on one short cycle are adjacent by dimension 1 edges to vertices with edges in 

dimension 3 on another short cycle. This helps us to obtain a short path from 

u = (Ul, u2, u3. . . . , l&j) to 21” = (211, 02, 2’3, u4, . . . , UJ. 

Theorem 3.3. The folded cycle interchange spanner S is a (2r(d - 6)/8 1 + 

4r(d + 1)/41 + 6 + x) -spanner of G,,, with As = 4 and Ss ,< 4. 

Proof. Given two vertices u = (u,, u2, . . . , ud) and u = (L’~, ol, . . . , ud), dG(u, v) = 

If= 1 1 ui - uiJ. We wish to bound the delay between u and v in S. Since S contains all 

edges of dimension 1, there is a path from u to v consisting of a path in dimension 

1 from u to ~1’ = (ol, u2, uj. . . , ud), followed by a path from u’ to ~1. Thus, 

ds(u, u) d ds(u’, u) + Jul - ul(. Since dG(u, O) = dJu’, 2’) + Iul - ~~1, d&(u, 0) 6 d$(u’, u). 

From vertex u’, we begin to move to u” = (zjl, v2, 03, u4, . . . . 14J by taking 

b d L(r(d - 3)/41 + 1)/2 J = [(d - 6)/81 dimension 1 edges to the nearest vertex with 

neighbors in either dimension 2 or dimension 3. In the former case, we move ) u2 - u2) 

steps in dimension 2 followed by one edge negatively in dimension 1, arriving at 
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a vertex with neighbors in dimension 3. From here, we continue with 1 u3 - r3 1 steps in 

dimension 3, followed by b + 1 edges positively in dimension 1. arriving at u”. In the 

latter case we move (~1~ - t’3( steps in dimension 3 followed by one edge positively in 

dimension 1. arriving at a vertex with neighbors in dimension 3. From here. we 

continue with (u? - I.~) steps in dimension 7, followed by h + 1 edges negatively in 

dimension 1. arriving at II”. In either case, the length of the path from U’ to tl” is at most 

?r(tl - 6)!81 + 7 + 111, - rl/ + /t12 - 1.~1 + )tfA - 1.J. 

We will construct a path from 11” to I’ by interspersing single-dimensional paths in 

dimensions 4 through tl into a short cycle. The cycle consists of 4 paths of [((I + 1),‘41 

edges in dimension 1 joined alternately by dimension 2 and dimension 3 edges. Note 

that such a cycle will encounter a vertex with edges in dimension k for all 4 < li < d. At 

each such vertex, we include the appropriate path of length luk - rk( in dimension k. 

The total path length from II to tl is (2r(t! - 6);81 + 2 + ~;‘=,Iu~ - ~,jl 

+ (4r((l + I):41 + 4 + x;=,lu, - l.,J) = 2r(d - 6):81 + 4r(r-I + 1):47 + 6 + S;_ I jLIL 

- 1.11 = 3 Lb/ - 6)!‘8 J -t 4[(n + 1);‘41 + 6 + &(u, ~‘1. 0 

Proof. We assume that the dimensions have been permuted so that 11~ 3 r&/21 + 1. 

In the proof of Corollary 3.2a. we shifted the construction to ensure that no vertex was 

at distance more than (roughly) r1/4 from a vertex with neighbors in dimension 2. 

Similarly. we shift this construction to ensure that no vertex is at distance more than 

(roughly) d/8 from a pair of adjacent vertices with neighbors in dimensions 2 and 3. 

Let ~1 = r(tr + 5)/41. (This is the dimension 1 length of an interchange.) To construct 

a folded cycle interchange spanner for G,,I.,,l. ,,d, we first shift the infinite folded cycle 

interchange spanner s units positively in dimension 1 and then take the induced 

subspanner, where s = [(If1 + (ill mod ~1)),/‘21 if 0 < II, modm < 1 and s = r(2 + 

(rl,mod IH)):?~ if 2 d II 1 mod III < 1~1 - 1. 

The path from u to t’ is constructed in the same manner as in Theorem 3.3 except 

when U” is not on a short cycle. If this is the case. the path described from u’ to II” (e\sn 

if u = u”) contains both a vertex with neighbors in dimension 2 and a vertex with 

neighbors in dimension 3. One of these vertices must be on a short cycle and thus the 

short cycle (interspersed with single-dimensional paths) can be spliced into the path at 

this point (rather than occurring after it). The delay analysis is essentially the same as 

in the proof of Theorem 3.3 except that, due to shifting. h < [(I/ - 2)/81 (rather than 

r(J - 6)/8j) and. thus, the delay bound is 2r(tl - 2)/S] + 4r(cl + 1):41 + 6. 3 

To describe our next generalization, we consider the layers of a cycle interchange 

spanner. Starting from a layer with dimension 2 edges, by increasing the dimension 

1 coordinate we encounter [(d - 2)Ql layers that each contain edges in two different 

dimensions. This pattern of a dimension 2 layer followed by r(cI - ?).!21 other layers IS 
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cyclically repeated across the entirety of dimension 1. When d is large, one may 

improve the delay of the spanner by interleaving I additional dimension 2 layers 

equally spaced in each set of r(d - 2)/21 layers. This increases the length of the cycle 

by 21 but decreases the delay from u’ to U” in our analysis. We call such a spanner an 

1 shortcut interchange spanner. 

To construct a maximum degree 4 1 shortcut interchange spanner S of an infinite 

d-dimensional grid, G,d,, for 1 < 1 < rd/21- 2, we begin by connecting every vertex 

(UI, u2, .‘. 9 Ud) to (Ul + 1, Uz, . ..) Q). Let ;I = ([d/21 + 1)/(1 + 1). When u1 = Li/_J 

(modrd/2)+I)forO6i~I,thenweconnect(ul,uz,...,Ud)to(U1,U1+1,113,...,zld). 

Note that this adds 1 dimension 2 layers which are roughly equally spaced as described 

above. When n2 is even and u1 $ Li/z J (modrll//J + 1) for any 0 d i d 1, we connect 

(tlr, u2, . . . , ilk, . . . , u,) to (l(1, u2, . . . , uk + 1, . . . , ud), where k # u,(modrd/21 + 1) + 

2 - Lllr(modrd/21+ l)/nl. Wh en 112 is odd and u1 fLu](modrd/2]+ 1) for any 

0 d i d 1, we consider two cases: If 1~~ E [d/21 + 1 - 1 (mod rll/21+ 1) and d is odd, 

we add no further connections to (u,, u?, . . . , IA&. Otherwise, we connect 

(Ur, U2, . . , Ud) to (u,,u2 ,... .& + I,..., &), where li = u1 (mod rt1/21+ 1) + 

[d//31 + 1 - LUG (mod [d/21 + I)/i J. Fig. 3 shows a 2-dimensional slice (dimensions 

1 and 2) of a 3 shortcut interchange spanner of G,r.+,. 

Theorem 3.4. The 1 shortcut interchange spamer S (for 1 < 16 rd/2) - 2) is 

a (r(rd/21 + l)/(l + 1)1 + 2rd/21 + 21 + 2 + .x)-spanner oj‘GCJ, bvith As = 4 and 6, d 4. 

Proof. We proceed as in the proof of Theorem 3.2. Given two vertices 

u = (ur, u2, . . . , ud) and v = (vr, c2, . . . . Ed), &(u, V) = Cf= 1 jut - Z.tl. We wish to bound 

the delay between u and u in S. Since S contains all edges of dimension 1. there is 

a path from u to v consisting of a path in dimension 1 from u to u’ = (z’r, u2, uj, . . ud), 

followed by a path from U’ to r. Thus, d,(u, ~3) < ds(u’. c) + juI - rl/. Since 

dG(u, 21) = dc(u’, 2’) + Iul - u~(, d&t. tl) < d&r’, 2.). 
From vertex u’, we move to U” = (z’r, rL, z13, . . . , ud) by taking b ,< L [j-1/2 J dimen- 

sion 1 edges to the nearest vertex with neighbors in dimension 2, followed by a path of 

lu2 - c2( edges in dimension 2 and b more edges to u”. 

We will construct a path from U” to 1’ by interspersing single dimensional paths in 

dimensions 3 through d into a short cycle. The cycle consists of 2 paths of [d/21 + 1 
edges in dimension 1 joined on both ends by a single dimension 2 edge. Note that such 

a cycle will encounter a vertex with edges in dimension k for all 3 < k < d. At each 

such vertex, we include the appropriate path of length Iuk - Q( in dimension k. 
The total path length from u to L’ is IU 1 - ~11 + (2b + Iu2 - 0~1) + 2(rd/21 + 1) + 

2 + =&bk- vkj = dG(u, v) + 2b + 2(rd/21 + 1) + 2 < d,(u, r) + 

2L riqj2j + 3(rd/q + 1) + 2 ,< dJu, 27) + [Al + 2(rd/21 + 1) + 2 = dG(u, c) + 

j-([d/21+ ly(1 + 1)~ + 3rd/q + 21 + 2. 0 

Corollary 3.4a. For an_vjnite d-dimensional grid G’ = G,,,,,, , ,~d lvith ni > rd/2 ] + 1 

for some 1 ,< i < d, there exists a ([([d/21 + l)/(l + l)] + 2rd/21 + 21 + 2 + X) - 
spanner of G’ for each 1 < 1 d [d/21 - 2 bvith A = 4 and 6 < 4. 
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;4 il0 j4 ,I0 

0 0 

,,5 ,,I1 ,,5 ,,ll 

,,4 ,lO ,,4 ,lO 

0 41 

Fig. 3. A slice of a 3 shortcut interchange spanner of G ,1Jj showing dimension 1 vertically and dimcnk~n 
2 horizontally. Lahel i on a vertex indicates that the vertex is connected to its neighbors in dimension i. 

Proof. We proceed by modifying the proof of Theorem 3.4 exactly as the proof of 

Corollary 3.3a followed from the proof of Theorem 3.2 except that we use the 

following procedure to determine how much to shift the infinite construction before 

inducing the subspanner on the finite grid. Suppose that we induce the subspanner 

without shifting. Let j be the distance from a vertex with maximum .x,-coordinate to 

a vertex with an edge in dimension 2. Shift the infinite spanner [j/21 units positively in 

dimension 1. This ensures that every vertex is within distanceLril/ZJ of a vertex with 

neighbors in dimension 2. 0 

Among the first three constructions (path interchange, cycle interchange. and folded 

cycle interchange), the path interchange spanner yields the lowest delay for d < 14. the 

cycle interchange yields the lowest delay for 14 < (1 < 25, and the folded cycle 

interchange yields the lowest delay for rl 2 15. The 1 shortcut interchange spanner has 

lower delay than the first three constructions for n 2 15. The 2 shortcut interchange 

spanner has lower delay than the I shortcut interchange spanner for d 3 31. 
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Generally, the 1 shortcut interchange spanners will outperform the other types for 

sufficiently large d when 1 < I < d/S. However, routing in the 1 shortcut interchange 

spanners is more complicated than in the first three types. 

We can decrease the delay on these four constructions by allowing the maximum 

degree to increase. For instance. we may create a spanner like the path interchange 

spanner but where each layer contains all of the edges in k dimensions instead of just 

a single dimension. 

4. Construction of grid spanners with maximum degree 3 

In this section we construct a good spanner of Gld) with maximum degree 3. We 

begin by discussing the general method of construction and then present a more 

detailed specific construction. 

We first decompose Gtd) into d-dimensional hypercubes as follows: Each vertex 

(ui, uz, . ud) belongs to a hypercube H,, _. ild where Zi = L UJ2 J for 1 d i < ~1. The 

edges of Hz,.,,. .3d are those induced by the vertices of H,,.,,, _,zd in G,,,. The 

remaining edges of Gfd, connect adjacent hypercubes. 

A Izighway is an infinite line of edges in some dimension i. that is, the subgraph 

induced in G,d) by the set of vertices (ui, . . . ui_i, X, Ui+i, . . . ud) where the U’S are 

constant and the Y varies over the integers. Given that Go, is decomposed into 

hypercubes as described above, any highway consists of a sequence of edges which are 

alternately edges of a hypercube and edges connecting adjacent hypercubes. The 

highway is said to htrrsect those hypercubes with which it shares an edge. 

A d-dimensional general bypass spanner is a spanner of G,d, such that every 

hypercube K,,,z, .ad is intersected by at least one highway in each dimension, and 

each hypercube H,,.,,, _.ad induces a connected subgraph of the spanner. 

Consider the two vertices u = (pi. u2. . . . u,) in Hl,.a2, .., _ and v = (ri. r2, , cd) in 

HP1.Bz, _,.Bd. To find a path from u to u in a general bypass spanner S of the grid 

G = G,d,, we examine the indices xi, az, . . c(d and pi, /jz, Pd. Suppose that Xi # pi for 

some 1 d i d d. Then, by moving from u to a vertex in H11,Z2, ,..,ad from which 

a highway in dimension i exits the hypercube in the direction of 

HE,.,,. . ..a. ,.p,.u,+,. ,ad and following the dimension i highway from H,,,,,. ,,_,ild to the 

first vertex u’ of H a,.xz. ,2,-1./1,.x1+1. ,Ed encountered, we have reduced the number of 

indices in which our source and destination hypercubes differ. By repeating this 

process, we eventually arrive at a vertex L" of Hlr,.b2. ,Sd (which could be u if ai = pi 

for 1 d i < d). To get from c’ to v, we follow any path between L" and z! in HB1,Bz., _,B,. 

Because each hypercube of the construction is connected. any such path between two 

vertices of the same hypercube is of length no more than 2d - 1. 

Let d’ denote the number of dimensions i such that gi # pi. The constructed path 

from u to u consists of (d’ + 1) subpaths each in a single hypercube alternating with 

d’ sections of highway edges. Thus, the total path length is at most (d’ + 1) (2d - 1) 

plus the length of the highway sections. As the highway sections used in the path 
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construction are shortest paths between the hypercubes involved, the length of the 

section of dimension i highway is < Illi - ~7~1. Thus, the total length of all highway 

sections is < If= rllli - ril = do(~. L:). This implies that the total path length in S is at 

most (d’ + 1) (2” - 1) + cIo( U. P) and, thus, the delay is at most (d’ + 1) (3” - I ). As 

(1’ < ti. this gives delay at most (tl + 1) (2” - 1). Thus. any general bypass spanner of 

the infinite t/-dimensional grid is a (L. + .Y) -spanner for some constant C. 

If a general bypass spanner is such that the highways are “regularly spaced” and 

each hypercube contains the same substructure, we call it a r.eq~rla~ h~~prrss sptr~rzt~r-. 

More formally, we can describe a regular bypass spanner S by indicating which edges 

ofH0.U. .0 are included in Sand designating at least one such edge in each dimension 

as a highway edge. The edges included in HO.o, .(, are included in each hyper- 

cube Hz,.,?. ,%,,: that is, if the edge from (~1,. . U_ r. 0. u;+ ,. 1~) to 

(111, ... Iii_1, 1. Iii+ L. ... ud) is included in S. then all edges (u, + 2r,. . II,. I 

+ 3X;- 15 2X,, ldi+ 1 + 7X;+ 1, ... , Ud + 22d) t0 (14, + ?%l.. . Ilj.. 1 + IX,_ 1. 2Xi + 1. Ll,~, 1 + 

?r: r-1. . u,, + 2xd) are also included in S. The endpoints of a dimension i highway edge 

also have edges leading to their other neighbor in dimension i. Consider two adjacent 

hypercubes Hz,.,,. ..x,, and Hz,. .sI, ,.lt, ,.1, + 1 ,2,,. These two hypercubes each 

contain a designated dimension i highway edge. Furthermore. there is a dimension 

i edge connecting these two designated highway edges. To complete S. we include all 

such connecting highway edges. 

WC now construct a maximum degree 3 regular bypass spanner S, of G,d, for tl > 3. 

The constant delay of this spanner is O(d) which is significantly better than the O(tP’) 

delay of a general bypass spanner. 

We label the nodes of a d-dimensional hypercube with r&bit binary strings. We 

follow the convention that the leftmost bit corresponds to the vertex’s coordinate 

in dimension 1, and the rightmost bit corresponds to the vertex’s coordinate in 

dimension II. 

A tlouhl~+~~~~t& hirzcw), tree is a full binary tree in which the root node has been split 

into two nodes (one with the left subtree hanging off of it, and the other with the right 

subtree) that are connected by an edge. Each of the vertices created by the split is 

known as a r’c~o~ of the double-rooted binary tree. and the edge between thorn is called 

the RI& ~dyr. A double-rooted binary tree is shown in Fig. 4. 

In [6]. it is shown that the double--rooted binary tree is a spanning subgraph of 

a J-cube. We give a detailed description of an embedding of the doubleerooted binary 

tree in the t/-cube in order to establish properties of this embedding which will be used 

in the spanner construction that follows. We denote this embedded double-rooted 

binary tree as DRB(d). First. we let DRB( l), DRB(2). and DRB(3) be the trees shown in 

Figs. 5(a), (b), and (c) respectively. 

Note that for DRB(3). the root edge of the tree is in dimension d. and is incident on 

the origin 000. The two edges adjacent to the root edge are in dimension ~1 - 1 (from 

000) and in dimension ti - 2 (from 001). 

We wish for our general construction to have the above properties; i.e. the root edge 

is in dimension tl from 00 00. and the two edges adjacent to the root are in 
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Fig. 4. The double-rooted binary tree DRB(5). 

(a) @I 

111 101 

110 100 

# 

011 001 

010 000 

(cl 

Fig. 5. The embedded double-rooted binary trees DRB( 1). DRB(2). and DRB(3) 

dimension d - 1 from 00 . . 00 and in dimension d - 2 from 00 . . . 01. When con- 

structing DRB(d + l), we assume that this is true for all of the trees DRB(d’) where 

1 d d’ 6 d. 
We now construct another embedding of the doubleerooted binary tree, symmetric 

to and derived from DRB(d). We call this embedding TWIST(d). Each vertex 

X = (xl, .x2, . ..xd-3. .&-2, -\‘&I, .%d) of DRB(d) is mapped to a vertex 

4(X) = (x1, x2, . . . SdP3 , s&_), xi_ 1, x&) of TWIST(d), where 

.&2 = .yd- 1. .x&r = Ir,, and .u& = x&J. 

Each edge (X, Y) of DRB(d) gives rise to an edge (4(X), 4(Y)) of TWIST(d). In 

TWIST(d), the root edge is in dimension d - 1 from 00 . . . 00, and the two edges 
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DRBfd) 

7WISTfd) 

Fig. 6. Making a double-rooted binary tree l’rom two smaller ones. 

adjacent to the root are in dimension rl from 00 . 00 and in dimension ~1 - 2 from 

00 . . 010. 

To construct DRB(d + l), we start by placing DRB(d) in the d-cube with (rl + l)- 

coordinate 0. and placing TWIST(d) in the d-cube with (II + I)-coordinate 1. We then 

add three edges in dimension (d + l), from the vertices 00 . . . 0000, 00 . . . 0010, and 

OO... 0100, to the vertices OO... 0001, OO... 0011. and OO... 0101: respectively. We 

then remove the edge from 00.. 0000 to 00.. 0100, and the edge from 00.. 0001 to 

00.. 001 1. Conceptually, we have spliced together two double-rooted binary trees to 

obtain a larger one as in Fig. 6. The resulting tree is DRB(d + 1). and indeed it has the 

root edge in dimension d + 1 from 00 . . .OO, and the two edges adjacent to the root 

edge in dimension d from 00 . 00 and in dimension 11 - 1 from 00 . . . 01. DRB(4) is 

shown in Fig. 7. 

Lemma 4.1. For d > 4, a certes is a leaf of’ DRB(rl) i.ft’ it is u /eqj’ of’ eithrr. the 

DRB(d - 1) or the TWIST(d - 1) used in the construction of’DRB(d). 

Proof. For d 3 4, DRB(d) was constructed from the DRB(d - 1) and TWIST(tl - 1) 

by adding and deleting some edges incident on the roots of these trees or incident on 

vertices adjacent to such roots. As d 2 4, the depths of the underlying double--rooted 

binary trees for both DRB(d - 1) and TWIST(d - 1) are at least two. Thus, no leaf is 

a root and no leaf is adjacent to a root. Therefore, the degree of any leaf in either the 

DRB(d - 1) or TWIST(d - 1) is unchanged when the two copies are put together. 

Furthermore, no new leaves are created. 0 

Corollary 4.la. For d 3 3, the certices 1000 . . . 0, 1100. _. 0. und 1110 . 0 we Iraws of’ 

DR B(d). 

We now describe which edges of Ho ,, 3 . . o are included in Sd. The structure in 

H 0.0. ,o is composed of a short cycle containing highway edges in each dimension, 

and a large tree connected to the cycle at a single vertex. The large tree is essentially 

composed of several instances of DRB(i) of different sizes i, all hanging off of a short 

path. 
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111 101 

110 100 

# 

011 001 

010 000 

(4 (b) 

(4 

Fig. 7. (a) The tree DRB(3). (b) the tree TWIST(3). (c) the tree DRB(4) 

For d B 4, the vertices of the d-cube can be decomposed into the vertices of a (d - l)- 

cube Qd_, with xd = 0. a (d - 2) -cube Qde2 with .xd_ r = 0 and xd = 1, a (d - 3)-cube 

Qdd3 with xd_ 2 = 0 and xd_ 1 = .xd = 1, and so on until we have one 3-cube Q3 with 

xS = 0 and .x5 = x6 = ... = xd = 1, and another 3-cube Q with x4 = x5 = ... = 

xd = 1. For 3 < i d d - 1, we form a tree T(i) in Qi by first placing DRB(i) in Qj and 

then deleting the three vertices vr(i), c2(i), and p,(i) that have the first i coordinates 

1000.. . 0, 1100.. 0, and 1110.. . 0, respectively. (These are coordinates in Qi, not in 

Ho,o. ,, .O.) Note that these vertices were leaves of DRB(I’). by Corollary 4.la, and thus 

T(i) is a tree. 

The cycle of the spanner of Ho,o, ..,, will contain the vertices of Q and all of the 

vertices y2(i) and us(i). The vertices ur(i) will be used to connect together the trees T(i) 

to form a large tree that will be connected to the cycle in en-r. 

The order of vertices on the cycle is ~l~(d - l)_ P~(LI - 2), . . , LJ~(~), 1111 . . 1, 

0111 . . . 1,OOll . . . 1. 1011 . . . 1. 1001 . . . 1,OOOl . . . I,0101 .., 1, 1101 .., 1, r2(3). t:,(4), . . . . 
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r,(d - 1). The high-dimensional part of this cycle is shown in Fig. 8. The highway 

edges are in dimension d between L’JLI_ - 1) and cj(d - 2). in dimension tl - 1 between 

[‘?((I - 2) and llz(d - 3). in dimension rl - 2 between r&J - 3) and P~(c~ - 4). and so on. 

alternating between ~1~ vertices and r3 vertices. 

If d is odd. this alternation ends at a dimension 5 edge between c,(4) and r,(3). The 

remaining highway edges are in dimension 4 between ~‘~(3) and 1101 ,.. I. in dimen- 

sion 3 between 1001 . . . 1 and 1011 . . . 1. in dimension 2 between 0101 . . 1 and 

0001 . . . 1, and in dimension 1 between 1111 . . . 1 and 0111 1 (see Fig. 9(a)). If tl is 

even. the alternation ends at a dimension 5 edge between r2(4) and 1.,(3). The 

remaining highway edges are in dimension 4 between r3(3) and 1111 . 1. in dimen- 

sion 3 between 1001 . 1 and 1011 . . . 1. in dimension 2 between 0111 .., 1 and 

0011 . . . 1, and in dimension 1 between 1101 . . . 1 and 0101 . . . 1 (see Fig. 9(b)). 

Recall that vertices on highway edges are connected outside of the hypercube in the 

direction of the highway edge. Thus. each highway edge effectively contributes two to 

the degree of its endpoints in the final bypass spanner construction. Note that. in the 

cycle as constructed, no vertex has more than one highway edge incident on it, and 

P d-4 6) d-2 

l 

Q d-3 
dimension (d-l) edges 

0 
d-l 

Y 
dimension d edges 

Fig. 8. Upper part of cycle with highway edges show-n as thick edges. 
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(a) (b) 

Fig. 9. Lower part of cycle with highway edges shown as thick edges: (a) d is even and (b) d is odd 

thus these vertices will have degree at most three in the bypass spanner. Furthermore, 

the vertex u2(d - 1) has no highway edges incident on it, and thus has only degree two 

so far. 

To complete our construction (forming the large tree referred to above), we extend 

the path ~‘~(d - l), lll(d - l), ci(d - 2). . . . , ~~(3) from the vertex ul(d - 1) on the cycle. 

This makes uZ(d - 1) degree 3, ~;~(3) degree 1, and the remaining vertices vi(i) degree 2. 

In each Qi we attach T(i) to this path by the edge in dimension 1 between the vertex 

r(i) with the first i coordinates 000 . . . 0 and VI(i), which has the first i coordinates 

100 . . 0. 

Adding these trees makes the degree of each of the vertices tll(i) be at most 3. Note 

that the vertex r(i), being the origin Of Qi, is a root of DRB(i), and hence has degree two 

in T(i). Adding the edge to vl(i) makes each r(i) have degree 3. 

This completes the construction of the substructure of Ho,o. ,o, and, together with 

the inclusion of the appropriate highway edges between adjacent hypercubes as 

described above, it also completes the construction of the bypass spanner Sd of GCdP 

which has maximum degree three. 

Since the construction of the bypass spanner S, partitions the d-grid into d-cubes, 

and then replicates the same structure on each d-cube, the average degree for the 

spanner is the same as the average degree for a single hypercube. In any such d-cube, 

there are 2d vertices. Recall that the structure of Sd in a d-cube is a cycle with an 

attached tree and, therefore, has 2d edges. Each of these edges contributes 2 to the total 

degree in the d-cube and each of the 2d highway edges leading to other d-cubes 

contributes 1 to the total degree. Thus, the average degree in Sd is 

2.2d+2d 

2d 
=2+&. 

Given two vertices u = (u,, u2, . . . &,) in Ha,.12, .ad and ti = (ui. z+, . . . cd) in 

H Sl.P2. .Sd’ we construct a path from u to 2’ in Sd COnSiSting of three SeCtiOnS: SeCtiOn 

A from u to vertex v,(d - 1) of H,,,,,. ,.. _, section B from vertex u3(d - 1) of 



H 1,.x2. .Q to vertex ~.?(d - 1) of H,j,,,12. ,8,1, and section C from vertex ~.,(rl - 1) of 

H,i,./i_. .,i,, to r. If u is a vertex on the cycle in HxI.,,, ,xd. then section A is the 

shortest path on the cycle from u to r3(d - 1) consisting of at most d + 1 edges. 

Otherwise, section A is the path from u to r&c1 - 1) in the large tree of 

H x,.)12. ,11,, which is of length at most tl + 1 edges. Thus, in either case. section 

A contains at most rl + 1 edges. Similarly, section C contains at most (1 + 1 edges. 

Section B can be thought of as one traversal of the cycle from ~‘~((1 - 1) to itself 

interspersed with single dimensional paths in each dimension i in which ri # /I,, The 

length of this section is 2~1 + 3 + Ed= 1 ?Ixi - PiI edges. By the way the grid has been 

subdivided into hypercubes, we have that llli - riI 3 2lr, - /);I - 1 for all i. The 

number of edges in the path from 11 to L’ may be rewritten as 4rI + 4 + x:!= 1 j II, - I’, j + 

g_, 1 < 411 + 4 + C”= ,/rli -- I.iI + tl < 5r-I + 4 + dc,,,(~l. I’). Thus. the delay in S,, is at 

most 5d + 4. giving: 

Theorem 4.2. The hypcm sparmrr Sd is LI (5~1 + 4 + x) -.sptrnner qf G,,,, ,tYth A = 3 LAM/ 

0 = 2 + &_ ,qd- 1 

We may also obtain good spanners of finite grids by taking induced subspanners of 

of .s& 

Proof. Consider the induced subspanner of the bypass spanner S,. The delay bound 

follows directly from the proof of Theorem 4.2. 0 

5. Construction of some specific spanners 

We have constructed other bypass spanners that improve the above delay bound 

for 3 and 4 dimensions. 

We now construct a maximum degree 3 spanner S of the infinite 3-dimensional grid. 

This spanner is much like a regular bypass spanner except that each hypercube does 

not induce a connected subgraph of the spanner. We begin by creating the highways. 

We create the dimension 1 highways by connecting (it, ~1~. ~1~) to (u, + 1. u?, ~1~) when 

r12 is even and z13 is odd. We then create the dimension 2 and dimension 3 highways by 

connecting(Ll,, ~1~. 1(J) to (u,, uz + 1, 143) when all is even and U, is odd, and (u,. ~1~. I[~) 

to (it, ~1,. ~1~ + 1) when it is even and ~1~ is odd. To complete the spanner, we connect 

all vertices (~1~. ~1~. ~1~) that are not on any highways (which we shall refer to as 

connector vertices) to (~1, + 1, 21~. Us), (u,. ~1~ + 1, L{>). and (u,, II,, ~1~ + I). 

Theorem 5.1. T/w .spnnne~ S &scrihrd ~dww is (1 (6 + .x) -spwrzer of’ G,3, bt,ith As = 3 

mtl 8s = 3. 
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Proof. Given two vertices u = (ui, LIP, u3) and r = (c’i, L’~, Us), &(u. ~1) = xi”= Jui - ~~1. 

We wish to bound the delay between u and I) in S. 

If one of the vertices, say u. is a vertex on a highway of dimension i, let II’ be the 

vertex on that highway with ith coordinate equal to 2’i. One path from u to D in 

S consists of a section along the ith-dimensional highway from u to u’ followed by 

a path from u’ to ~1. The delay along this path is equal to the delay from u’ to c, and 

d$(u, c.) d ds(u’, c). 

Otherwise, both u and u are connector vertices. If u and u differ in two or fewer 

coordinates, let u’ = u; clearly ds(u, 2)) = d$(u’, a). If u and L’ differ in all three coordi- 

nates, then one of them, say U, has lower first coordinate. From this vertex, we can step 

one edge upward in the first dimension to a highway in one of the other dimensions i. 

We follow this highway in the appropriate direction until we reach a vertex u’ with ith 

coordinate equal to L’i. As the first step and the highway section are both in the 

direction of L’ in G, ds(u, r) < d$(u’, c). 

In any case, u’ differs from r in at most two coordinates, U’ is either a connector 

vertex or is on a highway orthogonal to a plane containing 11’ and c’, and tls(u. P) < 

&( u’, 11). 

Consider the plane containing u’ and o; if there is more than one such plane, choose 

one orthogonal to the highway used to get from u to u’, if any. By symmetry, we can 

orient this plane to look like Fig. 10 where H denotes vertices on highways orthogonal 

to the plane and C denotes connector vertices. Also, by symmetry. we can assume that 

the connector vertices are each incident on an edge orthogonal to this plane that 

connects to a vertex on a horizontal highway. For convenience, we will call the 

horizontal direction dimension 1, the vertical direction dimension 2. and the ortho- 

gonal direction dimension 3. Note that u’ is labeled either C or H. 

H H H H 

c C C c 

H H H H 

c c c c 
. . . 

H 

C 

H 

c iI it . . . 

H H H 

C c c 

H H H 

C c c 

Fig. 10. A two-dimensional slice of spanner S. 
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If I’ is on a highway in dimension 2, then let c’ be the vertex on that highway with the 

same dimension 2 coordinate as u’. One path from U’ to I‘ in S goes from ~1’ to r’ and 

then along the highway to P, thus 41914’. P) < d,(zr’, I.‘). If II’ is a vertex of type H. then 

a path from II’ to r’ can be formed by stepping down in dimension 2. orthogonally in 

dimension 3 to a highway in dimension 1. following the highway. stepping from the 

highway to a connector vertex via a dimension 3 edge, moving right on a dimension 

1 edge, and finally stepping up on a dimension 2 edge. The two possible shapes ol 

this path are shown in Fig. 11. As we can see from the figure. this path has delay at 

most 6. If II’ is a type C vertex. then a similar path from LI’ to 1.’ can be found b) 

omitting the first and last edges of the path described above. Such a path has delay 

at most 4. 

It remains to consider the case where 1’ is either a type C or a type H vertex. Let 1.’ be 

1‘ if 1’ is a type C vertex or the type C vertex adjacent to I’ by a dimension 2. edge. 

otherwise. Similarly. let U” be 11’ if U’ is a type C vertex or the type C vertex adjacent to 

II’ by a dimension 2 edge, otherwise. Note that &LI’. r) d r&(14”, L.‘) + 2 since either 

tlG( u’, r) = &( 11”. I”) and &II’, V) d tls(u”. 1.‘) + 2. or tf,(lc’. L’) 3 tlG( 11”. L.‘) - I and 

rls(lr’. V) < rls(ll”. I”) + 1. Since II” and L.’ are both type C vertices. we can construct 

a path from 11” to 1” by stepping orthogonally in dimension 3 to a highway in 

dimension 1, following the highway, stepping from the highway to a connector vertex 

via a dimension 3 edge, stepping along a dimension 1 edge to a highway of dimension 

3, following the highway, and then stepping from the highway to 1.’ along a dimension 

I edge as shown in Fig. 12. As the distance traveled along the highway sections is the 

distance between II” and r’. this section has delay 4 and, hence. &(u’, 13) < 6. 

Thus. in all cases we have shown that tl$(lr’. r) < 6 and, therefore, r&u. I’) f 6. g 

Fig. Il. Possible path shapes 
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Fig. 12. Path from u” to u’. 

We can modify the above construction to obtain a maximum degree 3 spanner S of 

a finite 3-dimensional grid Gnl,nL,n3. We begin by taking the subgraph of the infinite 

spanner induced by the vertices of Gn1,n1,n3. 

Consider the face corresponding to x 3 = n3 - 1. The structure on this face is a set 

of parallel highways of dimension i (i = 1 or 2) alternating with lines 

containing connector vertices labeled C and vertices on highways in dimension 

3 (orthogonal to the face) labeled H, as shown in Fig. 10 (except that the face is 

finite). In the infinite spanner, each vertex labeled C or H was connected 

to its neighbor with s3 = 1~~. Thus, in the d m uced subgraph these vertices have degree 

at most 2. We can therefore add edges so that all edges of dimension i are included 

in this face without increasing the degree of any vertex beyond 3. The resulting 

structure on this face is shown in Fig. 13. To continue the construction of S. we modify 

the faces corresponding to x’r = nl - 1 and .Y? = tr2 - 1 similarly. Note that some 

vertices are on more than one face, but any edge added to a vertex corresponds to an 

edge deleted from the vertex when taking the induced subgraph. so no vertex has 

degree greater than 3. 

The case analysis to establish the delay of this finite spanner would be lengthy and 

would lend no special insight into the structure. Rather than constructing and 

verifying such an analysis, we note that due to the regular structure of the spanner, we 

can calculate the delay on any such spanner by computing the delay on a particular 

small spanner with the same parity in each dimension. Thus, a small number of 

computations can establish a general bound. To this end, we constructed a program 

that calculates the delay of such a spanner and ran it on various sizes of grids with all 

possible parity combinations to establish the following. 
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We now construct a maximum degree 3 regular bypass spanner S of the infinite 

4-dimensional grid that has two highways of each dimension passing through each 

hypercube. The edges we include in H,,,,.,,,, form the Hamiltonian cycle 0000. 1000. 

1010.1110.0110,0100,1100.1101,1111.0111.0101,0001,1001. 1011.0011.0010.The 

highway edges within H,, O.O,O are alternate edges of this cycle starting with the edge 

between 0000 and 1000. This structure is shown in Fig. 14 with thick edges indicating 

highway edges. 

H H H H 

C C c c 

H H H H 

C c C C 

H H H H 

C C C C 

H 

~~~~ 

H H H 

C C c c 

. . . 

Fig. 13. Structure of face of spanner S corresponding to .si = 11~ - I 

Fig. 14. Cycle in H,,.,.,.,, 
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Theorem 5.2. The spanner S described above is a (14 + x)-spanner of GC4, with As = 3 

and I& = 3. 

Proof. Consider any pair of vertices, u in Ha,,0LZ,a3,14 and u in Hlr,,Pz,D,,a4. If c(~ = pi, 

1 6 i < 4 then both u and v are on the cycle of HGI1,Jz.uJ,uJ and there exists a path along 

that cycle between the two vertices of length at most 8 and therefore d&(u, v) d 8. 

At this point, we could proceed with an analysis similar to that in our previous 

proof using a path consisting of a full cycle traversal interspersed with single dimen- 

sional paths. However, since our cycle includes two highway edges in each dimension, 

we can improve on this obvious bound. 

Note that all vertices of Ha,,a2,i12,14 are symmetric under a cyclic permutation of 

dimensions and possibly a reflection, and we may thus, without loss of generality. 

assume that u is the vertex of Ha,.aZ,aJ,z4 that has all coordinates even. The vertex u is 

therefore on a highway in dimension 1 and incident on a non-highway edge to a vertex 

on a highway in dimension 4 as shown in Fig. 15. 

We consider two paths from u to v in S. Let U’ be the vertex in Hal,Pr,PI,8~ with 

dimension 4 coordinate odd and the other coordinates even. One path from u to 

v consists of a path from u to u’ corresponding to a walk along the cycle (counterclock- 

wise in Fig. 15) to u’, interspersed with single-dimensional paths, followed by the 

shortest path along the cycle from U’ to v in H,1.Pz,P3,/14. Similarly, let u” be the vertex 

in Ha,,aZ,B3,8q with dimension 1 and 2 coordinates odd and the other coordinates even. 

Another path from u to o consists of a path from u to u” corresponding to a walk along 

the cycle (clockwise in Fig. 15) to u”, interspersed with single-dimensional paths, 

followed by the shortest path along the cycle from U” to v in Hf11.11Z,B_3,P4. 

Consider a highway section in dimension i contained in either of these paths, not 

including the highway edge (if any) of the conceptual cycle that we are traversing. This 

section goes between two vertices whose ith coordinates have the same parity and 

whose other coordinates are equal. This section is of length 2 lcli - pil, which is at most 

Iui - Z’i( + 1. Thus. in the path from II to u’, we have at most &(u, U) + 9 edges with 

Fig. 15. Redrawn cycle in Ho,o,o,o 



four of the extra edges coming from the four highway sections and the other hvc 

coming from the traversal of our conceptual cycle. Similarly. the number of edges in 

the path from II to 11” is at most LI~(u. r) + 10. Regardless of the location of 2’ on the 

cycle. the shorter of the two resulting paths from II to I’ is of length at most 

d,,(~, r) + 15. In fact. the length is at most tio(~, r) + 14 unless L’ has first coordinate 

odd and all other coordinates even (the vertex clockwise from II in the figure). In this 

latter case. we will use the path through ~0’ with the modification that we replace the 

highway section and cycle edge in dimension 1 with a highway section in dimension 

I consisting of exactly 1~~ - r, / edges. This gives a path length of at most 

tl,;(rr. I’) + 14. 0 

Proof. Consider the induced subspanner of the above spanner S. The delay bound 

follows directly from the proof of Theorem 5.2. 0 

6. Summary 

We proved an Q(d) lower bound for the delay of maximum degree 3 or 4 spanners of 

finite or infinite tl-dimensional grids. We then constructed spanners with maximum 

degrees 3 and 4 of both infinite and finite d-dimensional grids with delay 0((l). 

In particular, we constructed four different spanners with maximum degree 4 for 

infinite ri-dimensional grids with delays 21 - 4. 2 rtjj21 + qL/ - 2):4j + 3. 

zr(n - 6)/81+ 4r(d + 1)/41+ 6. and r(rd,q + /)/(I + l)l + 2rt~~‘21 + 2I + 2. WC 
showed how to modify these constructions to produce spanners of finite rl-dimen- 

sional grids with essentially the same delay. We constructed a (5d + 4 + X) -spanner 

with maximum degree 3 for the infinite d-dimensional grid and showed that an 

induced subgraph of this spanner is a (5rl + 4 + s) -spanner with maximum degree 

3 for finite tl-dimensional grids where all dimensions are even. These general construc- 

tions may be improved upon for specific dimensions. In particular. we constructed 

a (6 + .Y) -spanner of the infinite 3-dimensional grid and showed how it could bc 

modified to obtain a (6 + s) -spanner of a finite 3-dimensional grid where all dimen- 

sions are even or where all dimensions are odd and a (8 + X) -spanner of a finite 

3-dimensional grid otherwise. Finally. we constructed a (14 + X) -spanner for the 

infinite 4-dimensional grids and showed that this yields a (14 + x) -spanner of a hnitc 

4-dimensional grids with all dimensions are even. 
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