1,665 research outputs found

    Apparatus for measuring charged particle beam

    Get PDF
    An apparatus to measure the incident charged particle beam flux while effectively eliminating losses to reflection and/or secondary emission of the charged particle beam being measured is described. It comprises a sense cup through which the charged particle beam enters. A sense cone forms the rear wall of the interior chamber with the cone apex adjacent the entry opening. An outer case surrounds the sense cup and is electrically insulated therefrom. Charged particles entering the interior chamber are trapped and are absorbed by the sense cup and cone and travel through a current measuring device to ground

    Point singularities and suprathreshold stochastic resonance in optimal coding

    Full text link
    Motivated by recent studies of population coding in theoretical neuroscience, we examine the optimality of a recently described form of stochastic resonance known as suprathreshold stochastic resonance, which occurs in populations of noisy threshold devices such as models of sensory neurons. Using the mutual information measure, it is shown numerically that for a random input signal, the optimal threshold distribution contains singularities. For large enough noise, this distribution consists of a single point and hence the optimal encoding is realized by the suprathreshold stochastic resonance effect. Furthermore, it is shown that a bifurcational pattern appears in the optimal threshold settings as the noise intensity increases. Fisher information is used to examine the behavior of the optimal threshold distribution as the population size approaches infinity.Comment: 11 pages, 3 figures, RevTe

    Interacting with the biomolecular solvent accessible surface via a haptic feedback device

    Get PDF
    Background: From the 1950s computer based renderings of molecules have been produced to aid researchers in their understanding of biomolecular structure and function. A major consideration for any molecular graphics software is the ability to visualise the three dimensional structure of the molecule. Traditionally, this was accomplished via stereoscopic pairs of images and later realised with three dimensional display technologies. Using a haptic feedback device in combination with molecular graphics has the potential to enhance three dimensional visualisation. Although haptic feedback devices have been used to feel the interaction forces during molecular docking they have not been used explicitly as an aid to visualisation. Results: A haptic rendering application for biomolecular visualisation has been developed that allows the user to gain three-dimensional awareness of the shape of a biomolecule. By using a water molecule as the probe, modelled as an oxygen atom having hard-sphere interactions with the biomolecule, the process of exploration has the further benefit of being able to determine regions on the molecular surface that are accessible to the solvent. This gives insight into how awkward it is for a water molecule to gain access to or escape from channels and cavities, indicating possible entropic bottlenecks. In the case of liver alcohol dehydrogenase bound to the inhibitor SAD, it was found that there is a channel just wide enough for a single water molecule to pass through. Placing the probe coincident with crystallographic water molecules suggests that they are sometimes located within small pockets that provide a sterically stable environment irrespective of hydrogen bonding considerations. Conclusion: By using the software, named HaptiMol ISAS (available from http://​www.​haptimol.​co.​uk), one can explore the accessible surface of biomolecules using a three-dimensional input device to gain insights into the shape and water accessibility of the biomolecular surface that cannot be so easily attained using conventional molecular graphics software

    Ab-initio spin dynamics applied to nanoparticles: canted magnetism of a finite Co chain along a Pt(111) surface step edge

    Full text link
    In order to search for the magnetic ground state of surface nanostructures we extended first principles adiabatic spin dynamics to the case of fully relativistic electron scattering. Our method relies on a constrained density functional theory whereby the evolution of the orientations of the spin-moments results from a semi-classical Landau-Lifshitz equation. This approach is applied to a study of the ground state of a finite Co chain placed along a step edge of a Pt(111) surface. As far as the ground state spin orientation is concerned we obtain excellent agreement with the experiment. Furthermore we observe noncollinearity of the atom-resolved spin and orbital moments. In terms of magnetic force theorem calculations we also demonstrate how a reduction of symmetry leads to the existence of canted magnetic states.Comment: 4 pages, ReVTeX + 3 figures (Encapsulated Postscript), submitted to PR

    Stochastic resonance in electrical circuits—II: Nonconventional stochastic resonance.

    Get PDF
    Stochastic resonance (SR), in which a periodic signal in a nonlinear system can be amplified by added noise, is discussed. The application of circuit modeling techniques to the conventional form of SR, which occurs in static bistable potentials, was considered in a companion paper. Here, the investigation of nonconventional forms of SR in part using similar electronic techniques is described. In the small-signal limit, the results are well described in terms of linear response theory. Some other phenomena of topical interest, closely related to SR, are also treate

    Stochastic resonance in electrical circuits—I: Conventional stochastic resonance.

    Get PDF
    Stochastic resonance (SR), a phenomenon in which a periodic signal in a nonlinear system can be amplified by added noise, is introduced and discussed. Techniques for investigating SR using electronic circuits are described in practical terms. The physical nature of SR, and the explanation of weak-noise SR as a linear response phenomenon, are considered. Conventional SR, for systems characterized by static bistable potentials, is described together with examples of the data obtainable from the circuit models used to test the theory

    Optimal coding of a random stimulus by a population of parallel neuron models

    Get PDF
    Copyright © 2007 SPIE - The International Society for Optical Engineering. Downloading of the abstract is permitted for personal use only. Copyright 2007 Society of Photo-Optical Instrumentation Engineers. This paper was published in Noise and Fluctuations in Biological, Biophysical, and Biomedical Systems, edited by Sergey M. Bezrukov, Proc. of SPIE Vol. 6602, 66020R and is made available as an electronic reprint with permission of SPIE. One print or electronic copy may be made for personal use only. Systematic or multiple reproduction, distribution to multiple locations via electronic or other means, duplication of any material in this paper for a fee or for commercial purposes, or modification of the content of the paper are prohibited.We examine the question of how a population of independently noisy sensory neurons should be configured to optimize the encoding of a random stimulus into sequences of neural action potentials. For the case where firing rates are the same in all neurons, we consider the problem of optimizing the noise distribution for a known stimulus distribution, and the converse problem of optimizing the stimulus for a given noise distribution. This work is related to suprathreshold stochastic resonance (SSR). It is shown that, for a large number of neurons, the SSR model is equivalent to a single rate-coding neuron with multiplicative output noise.Mark D. McDonnell, Nigel G. Stocks and Derek Abbot

    Improving the learning needs survey by using four approaches

    Get PDF
    Copyright © 2005 Royal Australian College of General Practitioners Copyright to Australian Family Physician. Reproduced with permission. Permission to reproduce must be sought from the publisher, The Royal Australian College of General Practitioners.BACKGROUND: Learning needs analyses are often undertaken to plan continuing education programs. They usually use questionnaires that have shortcomings regarding validity, relevance, breadth and detail. We tested a questionnaire using four questioning strategies to approximately 1762 general practitioners. METHOD: Our questionnaire listing 104 topics asked open ended questions and specific information about desired topics. It was distributed by The Royal Australian College of General Practitioners and divisions of general practice in South Australia and the Northern Territory. RESULTS: The survey yielded 578 responses (33%). The different survey strategies highlighted different areas of learning need. Overall, the highest ranked topics were dermatology, complementary medicine, psychiatry, and business and practice management. Participating divisions were generally satisfied with the feedback. DISCUSSIONS: Despite a poor response rate, the survey provided interesting information, and a set of broad learning topics.J.A. Allan, D. Schaefer and N. Stock

    Study of MAS practice and knowledge and bibliographic references for management advisory services : MASPAK

    Get PDF
    https://egrove.olemiss.edu/aicpa_guides/2309/thumbnail.jp
    corecore