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ABSTRACT

We examine the question of how a population of independently noisy sensory neurons should be configured to
optimize the encoding of a random stimulus into sequences of neural action potentials. For the case where firing
rates are the same in all neurons, we consider the problem of optimizing the noise distribution for a known
stimulus distribution, and the converse problem of optimizing the stimulus for a given noise distribution. This
work is related to suprathreshold stochastic resonance (SSR). It is shown that, for a large number of neurons,
the SSR model is equivalent to a single rate-coding neuron with multiplicative output noise.
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1. INTRODUCTION

Biological sensory neurons communicate information about stimuli to the brain along nerve fibres via short
duration electrical pulses known as ‘spikes’, or, more formally, action potentials. Different methods are used in
different sensory system to encode information, such as the average rate of action potentials, and the timing
between consecutive action potentials. Another important method is ‘place coding,’ where the physical position
of the neuron producing action-potentials indicates important information about a stimulus.

Here, we are interested in the neural communication method known as rate coding. We relate recent results1

on a general model known as the Suprathreshold Stochastic Resonance (SSR) model2–13 to rate coding in
sensory neural populations. Information theory is used to demonstrate that the SSR model is equivalent to
a large population of sensory neurons that can overcome the effects of noise to produce an accurate rate-code
representation of an analog random stimulus.

Suprathreshold Stochastic Resonance (SSR) is a form of noise or randomness enhanced signal transmission—
i.e., Stochastic Resonance (SR)14, 15—that occurs in a parallel array of identical, but independently noisy, non-
linear threshold devices, including neuron models.5, 8, 13 We refer to this parallel array as the SSR model. Like
other forms of SR, the performance of the SSR model is improved by an optimal level of noise. However, unlike
conventional SR, this occurs not just for weak input signals, or subthreshold input signals, but for input signals
with arbitrary magnitude.

The SSR model was originally intended to model neural populations, however it has not previously been
related to optimal neural tuning curves. Discussion of optimal stimulus distributions has been restricted to the
specific case of Gaussian noise.8 Here we demonstrate that if the SSR model is viewed as a population of parallel
rate-coding neurons, information theory can be used to find optimal stimulus distributions, or optimal tuning
curves for the model.

This paper is structured as follows. In Section 2 we provide details of the general SSR model. Section 3
defines what we mean by optimal neural tuning curves, in the context of rate coding. It also provides a brief
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literature review of this topic and its relationship to information theory. Next, Section 4 explains how the SSR
model may be viewed as a population of parallel neurons, with an overall tuning curve. This perspective is based
on known expressions for the conditional probability distribution of the output of the model, for a given input
value. Section 5 summarizes our previous optimization results for the input or noise distribution in the SSR
model, before outlining how these results can be viewed in the neural coding context. The possible implications
of our results are discussed in Section 6.

2. THE SSR MODEL

The system in which SSR occurs is a specific case of the block diagram shown in Fig. 1. For SSR, each of
N parallel identical—i.e. θi = θ ∀ i—threshold device operates on nonidentical—due to independent additive
noise—but correlated, signals. It has been shown for suprathreshold—meaning signals that can have values
both above and below the threshold value, as opposed to entirely subthreshold—signal levels in such systems,
that the mutual information between the input and output signals has a maximum value for nonzero noise
intensity.2–6 This phenomenon was termed suprathreshold stochastic resonance to illustrate the fact that it is a
form of stochastic resonance that is not restricted to subthreshold signals.
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Figure 1. Generic Stochastic Quantization Model. Each of N threshold devices, with values θi, i = 1, .., N , is subject to
independent additive noise, ηi, i = 1, .., N . The common input to each device is the random signal, x. A specific case of
this model is the Suprathreshold Stochastic Resonance (SSR) model, which results when θi = θ ∀ i.

Initial work on SSR considered the input to the array of thresholds to be a random signal, with either a
Gaussian or uniform distribution, and the iid noise on each threshold to likewise be samples from a Gaussian
or uniform distribution.2, 3 The array was considered to be a communications channel, and the measure used
was the mutual information between the input signal and the discretely valued output. It has since been shown
that the SSR effect is very general12 and can also be described as stochastic quantization—i.e. non-deterministic
quantization—of a signal.10, 11

3. NEURONS, INFORMATION THEORY AND OPTIMAL TUNING CURVES

Empirical recordings of neural activity are often characterized by ‘firing rates,’ that is, the average number of
‘spikes’ observed while a given stimulus x, is held fixed. If this is repeated for a range of x, an average tuning
curve, T (x), can be found.16 Since T (x) is an average, there will be some variance about T (x), which would
normally be classified as noise. If this noise is dependent on the actual value of x, it is called multiplicative noise.
We note that if there is an upper limit, N , to the number of action potentials during duration, t, the tuning
curve may be normalized to a firing rate between 0 and 1.
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There have been many previous studies examining the rate of information transmission through a neuron
or population of neurons.17–19 This approach requires an assumption that the input stimulus to a neuron is
a random signal. The focus is usually on finding the maximum mutual information stimulus distribution. By
definition, such a distribution is one that achieves channel capacity.

Less frequently, results have appeared discussing the optimal tuning curve for a neuron or neural population.
This is equivalent to maximizing information transfer by optimizing the channel to suit a given stimulus distri-
bution. To achieve this, one usually has to assume a form of channel model. For example, Brunel and Nadal,20

suppose that the output, y, of a single neuron, in response to stimulus x, can be written as

y(x) = a(x) +
√

b(x)ξ, (1)

where a(x) and b(x) are deterministic and invertible functions, and ξ is a zero mean, unit variance random
variable. Note that this means that y(x) is a random variable. With a channel of this form, the conditional
mean of y given x is E[y|x] = a(x), and the conditional variance is var[y|x] = b(x).

The case where b(x) = 1 has been studied by Nadal and Parga,21 who show that the mutual information
between x and y is maximized when the PDF of the stimulus, fx(x) is proportional to the derivative of a(x)
with respect to x. This result can be viewed two ways. Firstly, given a channel of the form of Eqn. (1), with
b(x) = 1 and a specified a(x), channel capacity is achieved with a stimulus distribution proportional to da(x)

dx .
Alternatively, given a stimulus PDF, fx(x), optimality is achieved when

a(x) = A

∫ x

−∞
fx(ξ)dξ + B, (2)

where B is a constant.20

The case where a(x) = b(x)—i.e. a large-rate stimulus-dependant Poisson neuron—has been studied by
Brunel and Nadal.20 It is shown that the optimal transfer function is achieved when a(x)—the Poisson rate, for
a given stimulus value—satisfies

√
a(x) = A

∫ x

−∞
fx(ξ)dξ + B. (3)

As an example, supposing the stimulus is uniformly distributed between 0 and 1, Eqn. (3) is satisfied if a(x) = x2,
A = 2 and B = 0, since a′(x) = 2x.20

In Section 4 we discuss how the SSR model can be viewed as a neuron with a transfer function of the form
of Eqn. 1.

4. THE TUNING CURVE FOR THE SSR MODEL

We assume that the input stimulus to the SSR model is a time varying random aperiodic signal with a stationary
distribution. The analysis below is simplified by considering only a single value of the input stimulus, and then
averaging over its probability distribution. When we consider the SSR model as a population of neurons, we
represent the production of an action-potential in the i–th neuron, in response to input stimulus, x, by yi = 1.
When no action-potential is produced in response to x, we have yi = 0. The overall population response, y, is
the total number of action-potentials produced in response to x.

The conditional probability distribution, Py|x of the total number of action-potentials, given stimulus, x, is
given by the binomial distribution,

Py|x(n|x) =
(
N
n

)
Pn

1|x(1 − P1|x)(N−n), (4)

where
P1|x = 1 − Fη(θ − x), (5)

and Fη(·) is the cumulative distribution function (CDF) of the noise.
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Therefore, using the well known expression for the mean of a binomial distribution, the mean conditional
number of action potentials is

E[y|x] = NP1|x = N − NFη(θ − x). (6)

We also have the conditional variance as

var[y|X ] = NP1|x(1 − P1|x) = N(1 − Fη(θ − x))Fη(θ − x). (7)

From Eqns. (6) and (7), since Fη is a CDF, when the stimulus is at its mean value, the neural population has
a firing rate of N/2, with a maximum variance of 0.25N . When the stimulus is well below its mean, the firing
rate approaches zero, with little variance. When the signal is well above its mean, the firing rate approaches
saturation, i.e. y = N , with little variance.

The conditional mean and variance can be normalized, and made invariant to N , by dividing by the total
number of neurons, N . Fig. 2 shows (a) the normalized mean and (b) the variance of the firing rate, as a function
of stimulus intensity, x, for the SSR model, for the cases of uniform, cosine and Gaussian noise. These plots
illustrate the sigmoidal nature of the tuning curve, and the fact that the variance is maximum at the stimulus
mean.
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(a) Tuning curve for the SSR model (normalized
firing rate vs stimulus)
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Figure 2. Normalised mean firing rate of the SSR model (a), and variance in firing rate (b), as a function of stimulus
intensity, x, for the cases of uniform, cosine and Gaussian noise.

If the threshold value, θ, is equal to the mean of the stimulus, then when the stimulus is equal to its mean,
this could be considered as spontaneous firing due to noise alone. Furthermore, each individual neuron in our
model has the same characteristics as the population, and therefore exhibit spontaneous firing at the signal
mean, increased firing when the signal is above its mean, and decreased firing when the signal is below its mean.
This type of neuron is quite different to those discussed in previous work relating mutual information to Fisher
information and optimal tuning curves, which instead focus on neurons with Poisson firing statistics.20, 22 Even
though this means that tuning curves are sigmoidal, or at least increasing functions of the stimulus, the stimulus
itself is predominantly subthreshold, meaning that spontaneous firing rates are quite low.

Recalling Eqn. (1), we now use Eqns. (6) and (7) to write an expression for the output of the SSR model,

y(x) = NP1|x +
√

NP1|x(1 − P1|x)ξ(x). (8)

Note that here we have written the noise random variable, ξ, as a function of x, since we cannot assume that the
output noise has the same distribution for every value of x. However, for large N , since the binomial distribution
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approaches a Gaussian distribution, we are able to to write

y(x) =� NP1|x +
√

NP1|x(1 − P1|x)ξG, (9)

where ξG is a zero mean unity variance Gaussian random variable.1, 12 Regardless of whether the distribution
of ξ is constant or not, we have highlighted that the output noise of our model is multiplicative with respect to
the input signal, since the random part of the output is signal dependent.

4.1. Optimal Tuning Curves for the SSR model

Previously1—see Section 5— we have shown that the mutual information in the SSR model for a large number
of threshold devices, N , depends solely on N and an auxiliary PDF, fQ(·). This PDF is that of the random
variable describing the conditional average output of the SSR model, given that the input signal is X = x.

In this current paper, the general model1 is translated into a neural population consisting of N identical
parallel neurons. In this context fQ(·) describes the PDF of the mean spike count distribution—or normalized
tuning curve—of the entire population, for a given stimulus intensity.

Since the maximum value of the SSR model’s output is N , upon letting τ = ȳ
N ∈ [0, 1], then τ represents the

normalized average rate of ‘firing’. If the mutual information through the SSR model is maximized, assuming
large N , the optimal fQ(·) is1

fo
Q(τ) =

1
π
√

τ(1 − τ)
, τ ∈ [0, 1], (10)

which is the PDF of the arcsine distribution, i.e. the beta distribution with parameters 0.5 and 0.5. This result
holds regardless of whether the stimulus PDF is optimized for a given noise PDF or vice versa. This Beta
distribution is bimodal, with the most probable values of the stimulus those near zero and unity. Similar results
for an optimal input distribution in an information theoretic optimization of a neural system have previously
been found numerically.23

5. ANALYTICAL OPTIMIZATION OF STIMULUS AND NOISE DISTRIBUTIONS

Hoch et. al24 have shown that the Fisher information25, 26 for the SSR model is given by

J(x) =
(

dP1|x
dx

)2
N

P1|x(1 − P1|x)
. (11)

For large N , it is possible to write the mutual information for the SSR model in terms of the Fisher information
as

I(x, y) = H(x) − 0.5
∫ x=∞

x=−∞
fx(x) log2

(
2πe

J(x)

)
dx. (12)

Eqn. (12) was first discussed in the context of the SSR model by Hoch et. al.24 It has previously been utilized
for neural modeling by Brunel and Nadal,20 who showed that in the limit of large N , the mutual information in
a system becomes equal to the mutual information between the input signal and an efficient Gaussian estimator
for that signal.8, 20, 27–29

We have subsequently shown1 that Eqns. (11) and (12) lead to a simple, but general, sufficient condition for
the maximum mutual information in the SSR model for large N . This condition exists due to the fact that the
function

fS(x) =

√
J(x)

∫
φ

√
J(φ)dφ

=

√
J(x)

π
√

N
(13)

can be proven to be a probability density function (PDF). Such a PDF that is a normalization of the square
root of the Fisher information is known as Jeffrey’s Prior.30, 31 We have not found any previous work giving
examples of Jeffrey’s prior for which

∫
φ

√
J(φ)dφ can be integrated analytically, as is the case for the SSR model.
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Using Eqn. (13), we can rewrite Eqn. (12) as

I(x, y) = 0.5 log2

(
Nπ

2e

)
− D(fx||fS), (14)

where D(·||·) is relative entropy.

Since relative entropy is always non-negative, from Eqn. (14) a sufficient condition for achieving the large N
channel capacity is that

fx(x) = fS(x) ∀ x, (15)

with the resultant capacity as1

C(x, y) = 0.5 log2

(
Nπ

2e

)
� 0.5 log2 N − 0.3956. (16)

The derived sufficient condition of Eqn. (15) leads to two ways in which maximum mutual information can
be achieved. In a neural coding context, these are (i) an optimal stimulus PDF for a given noise PDF, and (ii)
an optimal noise PDF for a given stimulus PDF. Optimizing the noise PDF can be considered as optimizing the
neural channel, i.e. the tuning curve.

5.1. Optimizing the stimulus

With θ = 0, from Eqns. (15), (13) and (11), the optimal stimulus PDF—i.e. that which achieves maximum
mutual information—can be expressed in terms of the noise PDF and CDF as1

fo
x(x) =

fη(−x)
π
√

Fη(−x)(1 − Fη(−x))
. (17)

5.1.1. Examples

Suppose the noise in the SSR model is uniformly distributed on the interval [−ση/2, ση/2], i.e.,

fη(η) =
1
ση

, η ∈ [−ση/2, ση/2]. (18)

Substituting Eqn. (18) and its associated CDF into Eqn. (17), we find the optimal stimulus PDF is

fo
x(x) =

1

π

√
σ2

η

4 − x2

, x ∈ [−ση/2, ση/2]. (19)

This is the PDF of a sine-wave with uniformly random phase and amplitude ση/2, and is illustrated in Fig. 3.
Similar numerical results for an optimal stimulus distribution in an information theoretic optimization of a neural
system have been found previously.23 This means that our analytical results are potentially highly significant,
given their generality.

Suppose the noise has a Gaussian distribution with mean zero and variance σ2
η,

fη(η) =
1

√
2πσ2

η

exp
(
− η2

2σ2
η

)
. (20)

Substituting Eqn. (20) and its associated CDF into Eqn. (17), gives the optimal signal PDF, which cannot be
simplified very much. However, we have previously verified1 that the resultant PDF has the correct shape via
previous numerical results of Hoch et. al.8 The analytically optimal signal PDF, fo

x(x), from Eqs. (20) and (17),
with θ = 0, is plotted in Fig. 4, as well as a Gaussian PDF with variance 0.25π2. The optimal signal PDF clearly
has almost the same shape as the Gaussian PDF. This is quite different to the uniform noise case, where the
optimal stimulus is the bimodal arcsine distribution.
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is shown with a solid line. This was obtained from Eqn. (17). Superimposed with a dotted line is a Gaussian PDF with
the same peak value as fo

x(x). Clearly the optimal stimulus PDF is close to being Gaussian, for Gaussian noise.
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5.2. Optimizing the tuning curve via the noise distribution
We now assume knowledge of the stimulus distribution. We wish to maximize the mutual information by finding
the optimal noise PDF. This is equivalent to optimizing the neural channel. For θ = 0, the CDF corresponding
to fS(·), can be written in terms of the CDF of the noise distribution as1

FS(x) = 1 − 2
π

arcsin
(√

Fη(−x)
)

. (21)

Applying the sufficient condition for optimality that fx(x) = fS(x), we have Fx(s) = FS(x), and from Eqn. (21)
the optimal noise CDF can be expressed in terms of the signal CDF as

F o
η (x) = 0.5 + 0.5 cos (πFx(−x)). (22)

Recalling Eqn. (6), where the noise CDF is related to a neural tuning curve, Eqn. (22) is equivalent to the
optimal tuning curve for the SSR model.

This is a very interesting result in the context of neural coding and tuning curves. There is much evidence in
the neuroscience literature to support the belief that cosine tuning curves can be optimal.16, 22 For the special
case of a stimulus uniformly distributed between φ ∈ [0, 2π], the optimal noise CDF can be written as

F o
η (φ) = 0.5 − 0.5 cos

(
φ

2

)
, φ ∈ [0, 2π]. (23)

This compares with the peaked tuning curve centered at π given by Bethge et. al.,22 which can be written as

T (φ) = 0.5 + 0.5 cos (φ − π), φ ∈ [0, 2π], (24)

if it is assumed that the maximum firing rate is unity and the minimum rate is zero. Clearly Eq. (23) has the
same shape on [0, 2π] as Eq. (24) does on [0, π], but the former is a sigmoidal curve, while the latter has a peak.

6. DISCUSSION

Tuning curves nearly always imply that a large amount of spike rate variability exists for a fixed stimulus.
Our analysis indicates that (i) sigmoidal neural tuning mechanisms might require the presence of such random
fluctuations—without the randomness, tuning curves would not provide a near linear increase in rate with
stimulus; and (ii) this randomness could be modeled as additive noise at the input to each neuron in a population.
Note that it is not suggested that every neural system has a tuning curve that depends on randomness. However
one possible sensory system where our modelling could apply is for hair cells in the inner ear. Hair cells are
subject to substantial Brownian motion at the input,32 and synapse with groups of parallel identical afferent
neurons.

Another interesting consequence of our results is that it turns out that whether we optimize the stimulus
for a given noise distribution, or optimize the noise for a given stimulus, the optimal Fisher information can be
written as a function of the stimulus PDF,1

Jo(x) = Nπ2(fx(x))2. (25)

Therefore, when the mutual information is maximized, and N is large the Fisher information is constant iff the
stimulus is uniformly distributed. This is another very interesting result in the context of neural coding, since
the optimality of constant Fisher information in such a context has been previously studied by Bethge et. al.33

7. CONCLUSIONS AND FUTURE WORK

We have shown that the basic SSR model, even though consisting of very primitive neuron models, has a number
of properties that can be related to previous computation neuroscience research. Future work will expand our
results to the case of non-identical threshold values. We will also expand on our result showing that the Fisher
information for a uniformly distributed stimulus is constant, and relate this to results from estimation25 and
rate-distortion theory.26
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