22 research outputs found

    Relevance of genomic diversity of Mycobacterium tuberculosis complex in Africa

    Get PDF
    BACKGROUND: The diversity in the lineages of Mycobacterium tuberculosis complex (MTBC) was initially considered insignificant. However, comparative genomics analysis of MTBC have found genomic variation among the genotypes with potential phenotypic implications. OBJECTIVE: Therefore, this viewpoint seeks to discuss the impact of the identified genotypic diversity on the physiology of MTBC and the potential implications on TB control. RESULTS: Studies conducted in West Africa and other parts of Africa have unravelled the implications of the genomic diversity on phenotypes such as disease outcome, transmission dynamics and host immune response. The understanding of the phenotypic diversity among the different lineages of MTBC may be an important key to the fight against TB. CONCLUSION: The relevance of these differences has been observed in the design of new control tools such as diagnostics and anti-TB drugs/vaccines. This only points to the fact that the diversity in MTBC cannot be ignored in future studies especially clinical trials for new vaccines and new anti-TB drugs

    Molecular epidemiology of Mycobacterium africanum in Ghana

    Get PDF
    BACKGROUND: Mycobacterium africanum comprises two phylogenetic lineages within the M. tuberculosis complex (MTBC) and is an important cause of human tuberculosis (TB) in West Africa. The reasons for this geographic restriction of M. africanum remain unclear. Here, we performed a prospective study to explore associations between the characteristics of TB patients and the MTBC lineages circulating in Ghana. METHOD: We genotyped 1,211 MTBC isolates recovered from pulmonary TB patients recruited between 2012 and 2014 using single nucleotide polymorphism typing and spoligotyping. Associations between patient and pathogen variables were assessed using univariate and multivariate logistic regression. RESULTS: Of the 1,211 MTBC isolates analysed, 71.9 % (871) belonged to Lineage 4; 12.6 % (152) to Lineage 5 (also known as M. africanum West-Africa 1), 9.2 % (112) to Lineage 6 (also known as M. africanum West-Africa 2) and 0.6 % (7) to Mycobacterium bovis. Univariate analysis revealed that Lineage 6 strains were less likely to be isoniazid resistant compared to other strains (odds ratio = 0.25, 95 % confidence interval (CI): 0.05-0.77, P < 0.01). Multivariate analysis showed that Lineage 5 was significantly more common in patients from the Ewe ethnic group (adjusted odds ratio (adjOR): 2.79; 95 % CI: 1.47-5.29, P < 0.001) and Lineage 6 more likely to be found among HIV-co-infected TB patients (adjOR = 2.2; 95 % confidence interval (CI: 1.32-3.7, P < 0.001). CONCLUSION: Our findings confirm the importance of M. africanum in Ghana and highlight the need to differentiate between Lineage 5 and Lineage 6, as these lineages differ in associated patient variables

    Second-line anti-tuberculosis drug resistance testing in Ghana identifies the first extensively drug-resistant tuberculosis case

    Get PDF
    Background: Drug resistance surveillance is crucial for tuberculosis (TB) control. Therefore, our goal was to determine the prevalence of second-line anti-TB drug resistance among diverse primary drug-resistant Mycobacterium tuberculosis complex (MTBC) isolates in Ghana. Materials and methods: One hundred and seventeen MTBC isolates with varying first-line drug resistance were analyzed. Additional resistance to second-line anti-TB drugs (streptomycin [STR], amikacin [AMK] and moxifloxacin [MOX]) was profiled using the Etest and GenoType MTBDRsl version 2.0. Genes associated with resistance to AMK and MOX (gyrA, gyrB, eis, rrs, tap, whiB7 and tlyA) were then analyzed for mutation. Results: Thirty-seven (31.9%) isolates had minimum inhibitory concentration (MIC) values ≥2 µg/mL against STR while 12 (10.3%) isolates had MIC values ≥1 µg/mL for AMK. Only one multidrug-resistant (MDR) isolate (Isolate ID: TB/Nm 919) had an MIC value of ≥0.125 µg/mL for MOX (MIC = 3 µg/mL). This isolate also had the highest MIC value for AMK (MIC = 16 µg/mL) and was confirmed as resistant to AMK and MOX by the line probe assay GenoType MTBDRsl version 2.0. Mutations associated with the resistance were: gyrA (G88C) and rrs (A514C and A1401G). Conclusion: Our findings suggest the need to include routine second-line anti-TB drug susceptibility testing of MDR/rifampicin-resistant isolates in our diagnostic algorithm

    Whole genome sequencing and spatial analysis identifies recent tuberculosis transmission hotspots in Ghana

    Get PDF
    Whole genome sequencing (WGS) is progressively being used to investigate the transmission dynamics of; Mycobacterium tuberculosis; complex (MTBC). We used WGS analysis to resolve traditional genotype clusters and explored the spatial distribution of confirmed recent transmission clusters. Bacterial genomes from a total of 452 MTBC isolates belonging to large traditional clusters from a population-based study spanning July 2012 and December 2015 were obtained through short read next-generation sequencing using the illumina HiSeq2500 platform. We performed clustering and spatial analysis using specified R packages and ArcGIS. Of the 452 traditional genotype clustered genomes, 314 (69.5%) were confirmed clusters with a median cluster size of 7.5 genomes and an interquartile range of 4-12. Recent tuberculosis (TB) transmission was estimated as 24.7%. We confirmed the wide spread of a Cameroon sub-lineage clone with a cluster size of 78 genomes predominantly from the Ablekuma sub-district of Accra metropolis. More importantly, we identified a recent transmission cluster associated with isoniazid resistance belonging to the Ghana sub-lineage of lineage 4. WGS was useful in detecting unsuspected outbreaks; hence, we recommend its use not only as a research tool but as a surveillance tool to aid in providing the necessary guided steps to track, monitor, and control TB

    Macrophage susceptibility to infection by Ghanaian Mycobacterium tuberculosis complex lineages 4 and 5 varies with self-reported ethnicity

    Get PDF
    BackgroundThe epidemiology of Mycobacterium tuberculosis complex (MTBC) lineage 5 (L5) infections in Ghana revealed a significantly increased prevalence in Ewes compared to other self-reported ethnic groups. In that context, we sought to investigate the early phase of tuberculosis (TB) infection using ex vivo infection of macrophages derived from the blood of Ewe and Akan ethnic group volunteers with MTBC L4 and L5 strains.MethodsThe study participants consisted of 16 controls, among which self-reported Akan and Ewe ethnicity was equally represented, as well as 20 cured TB cases consisting of 11 Akans and 9 Ewes. Peripheral blood mononuclear cells were isolated from both healthy controls and cured TB cases. CD14+ monocytes were isolated and differentiated into monocyte-derived macrophages (MDMs) before infection with L4 or L5 endemic strains. The bacterial load was assessed after 2 hours (uptake) as well as 3 and 7 days post-infection.ResultsWe observed a higher capacity of MDMs from Ewes to phagocytose L4 strains (p &lt; 0.001), translating into a higher bacillary load on day 7 (p &lt; 0.001) compared to L5, despite the higher replication rate of L5 in Ewe MDMs (fold change: 1.4 vs. 1.2, p = 0.03) among the controls. On the contrary, within macrophages from Akans, we observed a significantly higher phagocytic uptake of L5 (p &lt; 0.001) compared to L4, also translating into a higher load on day 7 (p = 0.04). However, the replication rate of L4 in Akan MDMs was higher than that of L5 (fold change: L4 = 1.2, L4 = 1.1, p = 0.04). Although there was no significant difference in the uptake of L4 and L5 among cured TB cases, there was a higher bacterial load of both L4 (p = 0.02) and L5 (p = 0.02) on day 7 in Ewe MDMs.ConclusionOur results suggest that host ethnicity (driven by host genetic diversity), MTBC genetic diversity, and individual TB infection history are all acting together to modulate the outcome of macrophage infections by MTBC

    Biomarkers of oxidative stress and its nexus with haemoglobin variants and adverse foeto-maternal outcome among women with preeclampsia in a Ghanaian population: A multi-centre prospective study

    Get PDF
    Introduction Haemoglobin variants and preeclampsia (PE) are associated with adverse fatal events of which oxidative stress may be an underlying factor. Oxidative stress (OS) among preeclamptic women with haemoglobin variants has been well established. It is, however, unclear whether haemoglobin variants induce OS to aggravate the risk of adverse foeto-maternal outcomes in pregnant women with preeclampsia. We measured the levels of OS biomarkers and determined the association between haemoglobin variants, and adverse foeto-maternal outcomes among pregnant women with PE. Methods This multi-centre prospective study recruited 150 PE women from three major health facilities in both Bono and Bono east regions of Ghana from April to December 2019. Haemoglobin variants; HbAS, HbSS, HbSC, HbCC, and HbAC were determined by haemoglobin electrophoresis. OS biomarkers such as malondialdehyde (MDA), catalase (CAT), vitamin C, and uric acid (UA) along with haematological and biochemical parameters were estimated using standard protocol. Adverse pregnancy complications (APCs) such as post-partum haemorrhage (PPH), HELLP (Haemolysis, Elevated liver enzymes, Low platelet count) syndrome, preterm delivery, neonatal intensive care unit (NICU) admission, and neonatal jaundice were recorded. Results Of the 150 pregnant women with preeclampsia, the distribution of haemoglobin AA, AS, AC, CC, SS and SC phenotypes were 66.0%, 13.3%, 12.7%, 3.3%, 3.3% and 1.3%, respectively. The most prevalent foeto-maternal outcomes among PE women were NICU admission (32.0%) followed by PPH (24.0%), preterm delivery (21.3%), HELLP syndrome (18.7%), and neonatal jaundice (18.0%). Except for vitamin C level which was significantly higher in patients with at least a copy of Haemoglobin S variant than those with at least a copy of Haemoglobin C variant (5.52 vs 4.55; p = 0.014), levels of MDA, CAT, and UA were not statistically significantly different across the various haemoglobin variants. Multivariate logistic regression model showed that participants with HbAS, HbAC, having at least a copy of S or C and participants with HbCC, SC, SS had significantly higher odds of neonatal jaundice, NICU admission, PPH and HELLP syndrome compared to participants with HbAA. Conclusion Reduced levels of vitamin C are common among preeclamptics with at least one copy of the HbC variant. Haemoglobin variants in preeclampsia contribute to adverse foeto-maternal outcomes with Haemoglobin S variants being the most influencing factor for PPH, HELLP, preterm labour, NICU admission, and neonatal jaundice

    Reduced transmission of Mycobacterium africanum compared to Mycobacterium tuberculosis in urban West Africa

    Get PDF
    Understanding transmission dynamics is useful for tuberculosis (TB) control. A population-based molecular epidemiological study was conducted to determine TB transmission in Ghana.; Mycobacterium tuberculosis complex (MTBC) isolates obtained from prospectively sampled pulmonary TB patients between July 2012 and December 2015 were characterized using spoligotyping and standard 15-locus mycobacterial interspersed repetitive unit variable number tandem repeat (MIRU-VNTR) typing for transmission studies.; Out of 2309 MTBC isolates, 1082 (46.9%) unique cases were identified, with 1227 (53.1%) isolates belonging to one of 276 clusters. The recent TB transmission rate was estimated to be 41.2%. Whereas TB strains of lineage 4 belonging to M. tuberculosis showed a high recent transmission rate (44.9%), reduced recent transmission rates were found for lineages of Mycobacterium africanum (lineage 5, 31.8%; lineage 6, 24.7%).; The study findings indicate high recent TB transmission, suggesting the occurrence of unsuspected outbreaks in Ghana. The observed reduced transmission rate of M. africanum suggests other factor(s) (host/environmental) may be responsible for its continuous presence in West Africa

    Molecular epidemiology and whole genome sequencing analysis of clinical Mycobacterium bovis from Ghana.

    Get PDF
    BACKGROUND: Bovine tuberculosis (bTB) caused by Mycobacterium bovis is a re-emerging problem in both livestock and humans. The association of some M. bovis strains with hyper-virulence, MDR-TB and disseminated disease makes it imperative to understand the biology of the pathogen. METHODS: Mycobacterium bovis (15) among 1755 M. tuberculosis complex (MTBC) isolated between 2012 and 2014 were characterized and analyzed for associated patient demography and other risk factors. Five of the M. bovis isolates were whole-genome sequenced and comparatively analyzed against a global collection of published M. bovis genomes. RESULTS: Mycobacterium bovis was isolated from 3/560(0.5%) females and 12/1195(1.0%) males with pulmonary TB. The average age of M. bovis infected cases was 46.8 years (7-72years). TB patients from the Northern region of Ghana (1.9%;4/212) had a higher rate of infection with M. bovis (OR = 2.7,p = 0.0968) compared to those from the Greater Accra region (0.7%;11/1543). Among TB patients with available HIV status, the odds of isolating M. bovis from HIV patients (2/119) was 3.3 higher relative to non-HIV patients (4/774). Direct contact with livestock or their unpasteurized products was significantly associated with bTB (p<0.0001, OR = 124.4,95% CI = 30.1-508.3). Two (13.3%) of the M. bovis isolates were INH resistant due to the S315T mutation in katG whereas one (6.7%) was RIF resistant with Q432P and I1491S mutations in rpoB. M. bovis from Ghana resolved as mono-phyletic branch among mostly M. bovis from Africa irrespective of the host and were closest to the root of the global M. bovis phylogeny. M. bovis-specific amino acid mutations were detected among MTBC core genes such as mce1A, mmpL1, pks6, phoT, pstB, glgP and Rv2955c. Additional mutations P6T in chaA, G187E in mgtC, T35A in Rv1979c, S387A in narK1, L400F in fas and A563T in eccA1 were restricted to the 5 clinical M. bovis from Ghana. CONCLUSION: Our data indicate potential zoonotic transmission of bTB in Ghana and hence calls for intensified public education on bTB, especially among risk groups

    TB-diabetes co-morbidity in Ghana : the importance of Mycobacterium africanum infection

    Get PDF
    Diabetes Mellitus (DM) is a known risk factor for tuberculosis (TB) but little is known on TB-Diabetes Mellitus (TBDM) co-morbidity in Sub-Saharan Africa.; Consecutive TB cases registered at a tertiary facility in Ghana were recruited from September 2012 to April 2016 and screened for DM using random blood glucose and glycated hemoglobin (HbA1c) level. TB patients were tested for other clinical parameters including HIV co-infection and TB lesion location. Mycobacterial isolates obtained from collected sputum samples were characterized by standard methods. Associations between TBDM patients' epidemiological as well as microbiological variables were assessed.; The prevalence of DM at time of diagnosis among 2990 enrolled TB cases was 9.4% (282/2990). TBDM cases were significantly associated with weight loss, poor appetite, night sweat and fatigue (p&lt;0.001) and were more likely (p&lt;0.001) to have lower lung cavitation 85.8% (242/282) compared to TB Non-Diabetic (TBNDM) patients 3.3% (90/2708). We observed 22.3% (63/282) treatment failures among TBDM patients compared to 3.8% (102/2708) among TBNDM patients (p&lt;0.001). We found no significant difference in the TBDM burden attributed by M. tuberculosis sensu stricto (Mtbss) and Mycobacterium africanum (Maf) and (Mtbss; 176/1836, 9.6% and Maf; 53/468, 11.3%, p = 0.2612). We found that diabetic individuals were suggestively likely to present with TB caused by M. africanum Lineage 6 as opposed to Mtbss (odds ratio (OR) = 1.52; 95% confidence interval (CI): 0.92-2.42, p = 0.072).; Our findings confirms the importance of screening for diabetes during TB diagnosis and highlights the association between genetic diversity and diabetes. in Ghana

    Comparative genomics of Mycobacterium africanum Lineage 5 and Lineage 6 from Ghana suggests distinct ecological niches.

    Get PDF
    Mycobacterium africanum (Maf) causes a substantial proportion of human tuberculosis in some countries of West Africa, but little is known on this pathogen. We compared the genomes of 253 Maf clinical isolates from Ghana, including N = 175 Lineage 5 (L5) and N = 78 Lineage 6 (L6). We found that the genomic diversity of L6 was higher than in L5 despite the smaller sample size. Regulatory proteins appeared to evolve neutrally in L5 but under purifying selection in L6. Even though over 90% of the human T cell epitopes were conserved in both lineages, L6 showed a higher ratio of non-synonymous to synonymous single nucleotide variation in these epitopes overall compared to L5. Of the 10% human T cell epitopes that were variable, most carried mutations that were lineage-specific. Our findings indicate that Maf L5 and L6 differ in some of their population genomic characteristics, possibly reflecting different selection pressures linked to distinct ecological niches
    corecore