2,450 research outputs found

    Disorder induced brittle to quasi-brittle transition in fiber bundles

    Get PDF
    We investigate the fracture process of a bundle of fibers with random Young modulus and a constant breaking strength. For two component systems we show that the strength of the mixture is always lower than the strength of the individual components. For continuously distributed Young modulus the tail of the distribution proved to play a decisive role since fibers break in the decreasing order of their stiffness. Using power law distributed stiffness values we demonstrate that the system exhibits a disorder induced brittle to quasi-brittle transition which occurs analogously to continuous phase transitions. Based on computer simulations we determine the critical exponents of the transition and construct the phase diagram of the system.Comment: 6 pages, 6 figure

    Crossover transition in bag-like models

    Full text link
    We formulate a simple model for a gas of extended hadrons at zero chemical potential by taking inspiration from the compressible bag model. We show that a crossover transition qualitatively similar to lattice QCD can be reproduced by such a system by including some appropriate additional dynamics. Under certain conditions, at high temperature, the system consist of a finite number of infinitely extended bags, which occupy the entire space. In this situation the system behaves as an ideal gas of quarks and gluons.Comment: Corresponds to the published version. Added few references and changed the titl

    Aging dynamics and the topology of inhomogenous networks

    Full text link
    We study phase ordering on networks and we establish a relation between the exponent aχa_\chi of the aging part of the integrated autoresponse function χag\chi_{ag} and the topology of the underlying structures. We show that aχ>0a_\chi >0 in full generality on networks which are above the lower critical dimension dLd_L, i.e. where the corresponding statistical model has a phase transition at finite temperature. For discrete symmetry models on finite ramified structures with Tc=0T_c = 0, which are at the lower critical dimension dLd_L, we show that aχa_\chi is expected to vanish. We provide numerical results for the physically interesting case of the 2−d2-d percolation cluster at or above the percolation threshold, i.e. at or above dLd_L, and for other networks, showing that the value of aχa_\chi changes according to our hypothesis. For O(N)O({\cal N}) models we find that the same picture holds in the large-N{\cal N} limit and that aχa_\chi only depends on the spectral dimension of the network.Comment: LateX file, 4 eps figure

    Discontinuous percolation transitions in real physical systems

    Full text link
    We study discontinuous percolation transitions (PT) in the diffusion-limited cluster aggregation model of the sol-gel transition as an example of real physical systems, in which the number of aggregation events is regarded as the number of bonds occupied in the system. When particles are Brownian, in which cluster velocity depends on cluster size as vs∌sηv_s \sim s^{\eta} with η=−0.5\eta=-0.5, a larger cluster has less probability to collide with other clusters because of its smaller mobility. Thus, the cluster is effectively more suppressed in growth of its size. Then the giant cluster size increases drastically by merging those suppressed clusters near the percolation threshold, exhibiting a discontinuous PT. We also study the tricritical behavior by controlling the parameter η\eta, and the tricritical point is determined by introducing an asymmetric Smoluchowski equation.Comment: 5 pages, 5 figure

    Revisiting the effect of external fields in Axelrod's model of social dynamics

    Get PDF
    The study of the effects of spatially uniform fields on the steady-state properties of Axelrod's model has yielded plenty of controversial results. Here we re-examine the impact of this type of field for a selection of parameters such that the field-free steady state of the model is heterogeneous or multicultural. Analyses of both one and two-dimensional versions of Axelrod's model indicate that, contrary to previous claims in the literature, the steady state remains heterogeneous regardless of the value of the field strength. Turning on the field leads to a discontinuous decrease on the number of cultural domains, which we argue is due to the instability of zero-field heterogeneous absorbing configurations. We find, however, that spatially nonuniform fields that implement a consensus rule among the neighborhood of the agents enforces homogenization. Although the overall effects of the fields are essentially the same irrespective of the dimensionality of the model, we argue that the dimensionality has a significant impact on the stability of the field-free homogeneous steady state

    Dielectric properties measurements of brown and white adipose tissue in rats from 0.5 to 10 GHz

    Get PDF
    Brown adipose tissue (BAT) plays an important role in whole body metabolism and with appropriate stimulus could potentially mediate weight gain and insulin sensitivity. Although imaging techniques are available to detect subsurface BAT, there are currently no viable methods for continuous acquisition of BAT energy expenditure. Microwave (MW) radiometry is an emerging technology that allows the quantification of tissue temperature variations at depths of several centimeters. Such temperature differentials may be correlated with variations in metabolic rate, thus providing a quantitative approach to monitor BAT metabolism. In order to optimize MW radiometry, numerical and experimental phantoms with accurate dielectric properties are required to develop and calibrate radiometric sensors. Thus, we present for the first time, the characterization of relative permittivity and electrical conductivity of brown (BAT) and white (WAT) adipose tissues in rats across the MW range 0.5-10GHz. Measurements were carried out in situ and post mortem in six female rats of approximately 200g. A Cole-Cole model was used to fit the experimental data into a parametric model that describes the variation of dielectric properties as a function of frequency. Measurements confirm that the dielectric properties of BAT (Δr = 14.0-19.4, σ = 0.3-3.3S/m) are significantly higher than those of WAT (Δr = 9.1-11.9, σ = 0.1-1.9S/m), in accordance with the higher water content of BAT

    Utility of Microwave Radiometry for Diagnostic and Therapeutic Applications of Non-Invasive Temperature Monitoring

    Get PDF
    This paper describes the use of microwave radiometry for several diagnostic and therapeutic applications that can benefit from accurate non-invasive measurement of volume average temperature of tissue regions extending 4cm or more into the body. Design features are summarized for an appropriate high sensitivity long term stable system with 2.5 and 7 cm diameter receive antennas and integral 1.35 GHz total power radiometer electronics. Radiometer performance is characterized with electromagnetic and thermal simulations and experimental measurements in realistic models of two typical clinical applications. Results demonstrate sufficient sensitivity to track clinically significant changes in temperature of deep tissue targets for applications like the non-invasive detection of vesicoureteral reflux and monitoring brain “core” temperature during extended hypothermic surgery

    Analytical approach to directed sandpile models on the Apollonian network

    Full text link
    We investigate a set of directed sandpile models on the Apollonian network, which are inspired on the work by Dhar and Ramaswamy (PRL \textbf{63}, 1659 (1989)) for Euclidian lattices. They are characterized by a single parameter qq, that restricts the number of neighbors receiving grains from a toppling node. Due to the geometry of the network, two and three point correlation functions are amenable to exact treatment, leading to analytical results for the avalanche distributions in the limit of an infinite system, for q=1,2q=1,2. The exact recurrence expressions for the correlation functions are numerically iterated to obtain results for finite size systems, when larger values of qq are considered. Finally, a detailed description of the local flux properties is provided by a multifractal scaling analysis.Comment: 7 pages in two-column format, 10 illustrations, 5 figure

    Percolation on the average and spontaneous magnetization for q-states Potts model on graph

    Full text link
    We prove that the q-states Potts model on graph is spontaneously magnetized at finite temperature if and only if the graph presents percolation on the average. Percolation on the average is a combinatorial problem defined by averaging over all the sites of the graph the probability of belonging to a cluster of a given size. In the paper we obtain an inequality between this average probability and the average magnetization, which is a typical extensive function describing the thermodynamic behaviour of the model
    • 

    corecore