We study discontinuous percolation transitions (PT) in the diffusion-limited
cluster aggregation model of the sol-gel transition as an example of real
physical systems, in which the number of aggregation events is regarded as the
number of bonds occupied in the system. When particles are Brownian, in which
cluster velocity depends on cluster size as vs∼sη with
η=−0.5, a larger cluster has less probability to collide with other
clusters because of its smaller mobility. Thus, the cluster is effectively more
suppressed in growth of its size. Then the giant cluster size increases
drastically by merging those suppressed clusters near the percolation
threshold, exhibiting a discontinuous PT. We also study the tricritical
behavior by controlling the parameter η, and the tricritical point is
determined by introducing an asymmetric Smoluchowski equation.Comment: 5 pages, 5 figure