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Effect of external fields in Axelrod’s model of social dynamics
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(Received 14 May 2012; published 21 September 2012)

The study of the effects of spatially uniform fields on the steady-state properties of Axelrod’s model has yielded
plenty of counterintuitive results. Here, we reexamine the impact of this type of field for a selection of parameters
such that the field-free steady state of the model is heterogeneous or multicultural. Analyses of both one- and
two-dimensional versions of Axelrod’s model indicate that the steady state remains heterogeneous regardless of
the value of the field strength. Turning on the field leads to a discontinuous decrease on the number of cultural
domains, which we argue is due to the instability of zero-field heterogeneous absorbing configurations. We find,
however, that spatially nonuniform fields that implement a consensus rule among the neighborhood of the agents
enforce homogenization. Although the overall effects of the fields are essentially the same irrespective of the
dimensionality of the model, we argue that the dimensionality has a significant impact on the stability of the
field-free homogeneous steady state.

DOI: 10.1103/PhysRevE.86.031131 PACS number(s): 05.50.+q, 87.23.Ge, 89.75.Fb

I. INTRODUCTION

Axelrod’s model of social dynamics was introduced to
explore the mechanisms behind the persistence of cultural dif-
ferences in a society [1]. The agents are represented by strings
of cultural features of length F , where each feature can adopt
a certain number q of distinct traits. The interaction between
any two agents takes place with probability proportional to
their cultural similarity, i.e., proportional to the number of
traits they have in common. The analysis of this model by
the statistical physics community has revealed a rich dynamic
behavior with a nonequilibrium phase transition separating
the culturally heterogeneous from the culturally homogeneous
regime [2–4].

An interesting characteristic of Axelrod’s model, which sets
it apart from most lattice models that exhibit nonequilibrium
phase transitions [5], is that all stationary states of the dynamics
are absorbing states, i.e., the dynamics always freezes in one
of these states [2]. In fact, according to the rules of Axelrod’s
model, two neighboring agents who do not have any cultural
trait in common can not interact, and the interaction between
agents who share all their cultural traits does not result in
any change. Hence, at the stationary state, we can guarantee
that any pair of neighbors are either identical or completely
different regarding their cultural features. This allows us to
easily identify the stationary regime, which is a major problem
in the characterization of nonequilibrium phase transitions [5].
The problem, however, is that the dynamics can take a very
large time to freeze to a homogeneous configuration for some
initial conditions [2,6], which is the main reason there are so
few numerical estimates of the transition lines of the phase
diagram of Axelrod’s model [4].

From the perspective of the statistical physics, the appealing
feature of Axelrod’s model in a lattice of dimension d is the
existence of a threshold value qc = qc(F ) below which the sta-
tionary regime is monocultural (i.e., spatially homogeneous)
and above which multicultural (i.e., spatially heterogeneous).
This result holds true for both the two-dimensional [2,4]
and the one-dimensional [7,8] versions of Axelrod’s model.
We recall that the sources of disorder in this model are
the stochastic update sequence and the choice of the initial

configuration: it is the competition between the disorder of
the initial configuration and the ordering bias of the local
interactions that is responsible for the nontrivial threshold
phenomenon.

The introduction of an external global field to influence
the agents’ beliefs aiming at modeling the effect of the mass
media [9] resulted in a surprisingly difficult problem since
the external field favored the heterogeneous instead of the
homogeneous regime as one would naively expect. In addition,
a considerable amount of effort has been devoted to searching
for a threshold on the intensity of the media influence such
that above that threshold, the community is multicultural and
below it, the community is monocultural (see, e.g., [10–13]).
We have shown, however, that this threshold is an artifact
of finite lattices, and that even a vanishingly small media
influence is sufficient to produce cultural diversity in a region
of the parameter space where the homogeneous regime is
dominant in the absence of the media [14,15].

In this paper, we address another curious finding regarding
the effect of the media (or external field) in Axelrod’s model:
if the control parameters are such that the stationary regime is
multicultural at zero field, then turning the field on will lead
to a homogeneous state in the limit of vanishingly small field
intensity [11]. Here, we argue that the multicultural regime
remains multicultural, though with a reduced cultural diversity,
regardless of the intensity of the global external field. By global
field we mean a field that is spatially uniform (i.e., it is the same
for all agents), although not necessarily time independent [9].

Over and above the reexamination of previous results on the
effect of external fields in Axelrod’s model, in this paper we
show that the effect of the media in the one-dimensional model
is qualitatively identical to the two-dimensional model. Since
simulations of the one-dimensional model are fast, we will use
their results as clues to expose the properties of the stationary
state of the two-dimensional model in the computationally
prohibitive regime of large lattices.

The paper is organized as follows. In Sec. II, we briefly
present the basic elements of Axelrod’s model and describe
the different types of external global fields (media) we study
in this paper. In Sec. III, we show the results of the simulations
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for the one-dimensional model in the two cases of interest,
namely, when the media-free absorbing configurations are
homogeneous and when they are heterogeneous. In the first
case, we show that, similarly to the two-dimensional version
[14,15], even a vanishingly small field intensity is sufficient
to break up the homogeneous steady state. In the second
case, we show that the external field reduces the number of
cultural domains, but the steady state remains heterogeneous,
regardless of the field strength. This conclusion is corroborated
by the simulations of the two-dimensional model described in
Sec. IV. A different type of field, a spatially nonuniform field
that implements the consensus or majority rule among the
neighborhood of the agents, is discussed in a separate section
because it can not be interpreted as a media and produces
results completely distinct from the spatially uniform fields
(see Sec. V). Finally, in Sec. VI, we summarize our main
findings and present our concluding remarks.

II. MODEL

In the original formulation of Axelrod’s model [1], which
we will adhere to here, each agent is characterized by a set
of F cultural features which can take on q distinct values.
In the two-dimensional version, the agents are fixed in the
sites of a square lattice of linear size L with free boundary
conditions (i.e., agents in the corners of the lattice interact
with two neighbors, agents in the sides with three, and agents
in the bulk with four nearest neighbors), whereas in the one-
dimensional variant, the agents are fixed in the sites of a chain
of length L with the same boundary conditions. From our
perspective, the advantage of using free boundary conditions is
the ease of implementing the Hoshen and Kopelman algorithm
for counting the number of clusters in a lattice [16], but since
we are interested in the properties of the steady state for very
large lattice sizes, the choice of the boundary conditions is
largely irrelevant for Axelrod’s model.

The initial configuration is completely random with the
features of each agent given by random integers drawn
uniformly between 1 and q. At each time, we pick an agent at
random, i.e., the target agent, as well as one of its neighbors.
These two agents interact with probability equal to their
cultural similarity, defined as the fraction of common cultural
features. An interaction consists of selecting at random one
of the distinct features, and making the selected feature of
the target agent equal to its neighbor’s corresponding trait.
This procedure is repeated until the system is frozen into an
absorbing configuration. Axelrod’s model can be viewed as F

coupled voter models since it features the two main ingredients
of a voter model, namely, (i) given a voter (target agent) pick
a neighbor at random and (ii) the voter assumes the opinion of
the neighbor [17].

The introduction of an external field or global media in the
standard model follows the ingenious suggestion of adding a
virtual agent which interacts with all agents in the lattice and
the cultural traits of which reflect the media message [9]. In
the original version, each cultural feature of the virtual agent
has the trait which is the most common in the population: the
consensus opinion. Henceforth, we will refer to this type of
external field as the consensus field. The second type of field
we consider is constant in time, i.e., the media message is

fixed from the outset, so it really models some alien influence
impinging on the population. We will refer to this field as the
static field. Explicitly, we generate the culture vector of the
virtual agent at random and keep it fixed during the dynamics
[10,11]. (These two types of field were referred to as global and
external media by Ref. [11], but since both fields are global and
external, here we opt to use a more informative nomenclature.)

Regardless of the type of external field, the interaction of
the media (virtual agent) with the real agents is governed by
the control parameter p ∈ [0,1], which may be interpreted as
a measure of the strength of the external field influence. As in
the original Axelrod’s model, we begin by choosing a target
agent at random, but now it can interact with the media with
probability p or with its neighbors with probability 1 − p. The
media-free model is recovered by setting p = 0. Since we have
defined the media as a virtual agent, the interaction follows
exactly the same rules as before. We note that an alternative
prescription to couple the external field with the agents, in
which the target agent is affected regardless of its similarity
with the media message, always leads to a homogeneous
regime in the absence of noise [12].

Because of the unusually large times needed for some
initial configurations to relax to a homogeneous absorbing
configuration (relaxation to heterogeneous configurations is
typically very fast), the simulation of the dynamics of
Axelrod’s model must be made as efficient as possible. In
our simulations, we consider two lists of active links. The first
list (list A) is composed by the active links that connect real
agents, whereas the second list (list B) contains the active links
that connect the virtual agent (media) with the real ones. In
both cases, an active link is defined as a link that connects two
agents that have at least one feature in common and at least one
feature distinct from each other. Here, instead of picking the
target agent at random, we first select one of the two lists, list A
with probability 1 − p and list B with probability p, and then
pick a link at random from the selected list. In case of a link
from list B, the target agent is of course the real one, but if the
link belongs to list A we choose the target agent at random from
the two options. Regardless of the list selected, once we pick
a link, the interaction occurs with probability proportional to
the number of features the two agents have in common. In the
case that the cultural features of the target agent are modified
by the interaction with its neighbor, we need to reexamine the
active/inactive status of all links associated to the target agent
so as to update the lists of active links. The dynamics is frozen
when the two lists of active links are emptied.

III. EXTERNAL FIELDS IN THE
ONE-DIMENSIONAL MODEL

In the attempt to make Axelrod’s model more “realistic,”
researchers have studied the model in a variety of complex
networks (see, e.g., [18–20]), with the usual result that the
multicultural regime is suppressed by the increase of the
connectivity of the network and so the stationary regime is
homogeneous regardless of the values of the parameters q and
F . It is curious that the simple one-dimensional variant that
preserves the phase transition [7,8] received comparatively
almost no attention. In this section, we show that the effect
of external fields is essentially the same in one and two
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dimensions as far as the favoring of the homogeneous or
heterogeneous regimes is concerned. The dimensionality in-
troduces some distinctive effects, however, as we discuss next.

A. Field-free homogeneous regime

We begin our analysis with the once puzzling situation
in which the homogeneous media-free stationary regime
becomes heterogeneous under the influence of the external
media [9]. Since this problem was extensively studied in the
two-dimensional lattice [10,11,14,15], we present here only
a brief analysis of the effect of the static media, aiming at
highlighting the similarities and differences between the one-
and two-dimensional results.

To characterize the steady state of Axelrod’s model, we
focus on two basic statistical measures, namely, the normalized
average number of domains Ndom/L and the average relative
size of the domains that do not belong to the largest domain
1 − Smax/L. These quantities are shown in Fig. 1 together
with the fraction of runs trapped into homogeneous absorbing
configuration ξh. A domain or cluster is a bounded region in
which all agents share the same culture. We note that in this
figure, as well as in the next figures of this paper, the statistical
error bars are smaller or at most equal to the symbol sizes.
Typically, each symbol represents the result of the average
over 103 to 104 independent runs of the stochastic dynamics.

The first point to note is the remarkable similarity between
the results presented in the upper panel of Fig. 1 for the
one-dimensional and those for the two-dimensional model
[15]. For a fixed finite value of L, there seems to exist
a threshold value for the media strength p = pc below
which the regime is monocultural [10,11]. The quantity ξh

shown in the middle panel illustrates this somewhat odd
predominance of the homogeneous absorbing configurations,
in which the agents are identical to the static media, for
lattices of intermediate size and small p (the case p = 0 is
discussed below). However, as illustrated in the figure, this
“threshold” decreases with increasing L and so it is a finite
size effect. Thus, our conclusion is that in the thermodynamic
limit, even a vanishingly small field is sufficient to break
up the monocultural regime. More pointedly, extrapolating
the ratio 〈Ndom〉/L (upper panel of Fig. 1) for L → ∞
and plotting the result against p in a log-log graph yields
limL→∞〈Ndom〉/L ∼ p2.7 in the limit p → 0 (the quality of
this fitting is similar to that found in the analysis of the
two-dimensional model [15]).

The middle and lower panels of Fig. 1 reveal some
remarkable differences between the one- and two-dimensional
models. First, for p = 0, only about 35% of the samples (ran-
dom initial configurations) ended up into strictly homogeneous
absorbing configurations, whereas for the two-dimensional
model, this happens for all samples in the homogeneous
regime. The reason we keep referring to this regime as the
homogeneous regime is that the order parameters Ndom/L

and Smax/L take on values compatible with a homogeneous
phase. This only happens because the heterogeneous absorbing
configurations are composed of a single macroscopic domain
together with a nonextensive number of microscopic domains.
Hence, the probability that a randomly chosen site in such
configuration belongs to the largest domain is 1 in the
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FIG. 1. Results for the static media in the one-dimensional model
with F = 5 and q = 3 and for media strengths (unfilled symbols,
bottom to top in the upper and lower panels and top to bottom in
the middle panel) p = 0.01, 0.02, 0.03, 0.04, and 0.05. The filled
triangles are the media-free (p = 0) results. Here, 〈Ndom〉 is the
average number of domains, ξh is the fraction of runs that ended up
in homogeneous absorbing configurations, and 〈Smax〉 is the average
size of the largest domain. The straight line in the upper panel is 1/L.

thermodynamic limit. Second, and more importantly, in the
two-dimensional model the fraction of the sites that are
not part of the largest domain (the media in that case) is
finite and approaches zero for p → 0 [15], whereas in the
one-dimensional model that fraction tends to unity regardless
of the field strength p > 0. This means that the effect of the
field in one dimension is quite extreme: a vanishingly small
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field is enough to completely destroy the uniform regime, pro-
ducing a fragmented configuration composed of microscopic
domains. (We know that the domains are microscopic because
〈Smax〉/L → 0 in the thermodynamic limit.) This result is
probably a consequence of the “weakness” of the uniform
regime at p = 0 discussed above.

Our finding that a vanishingly small static field p → 0
breaks the field-free homogeneous configuration into a highly
fragmented heterogeneous configuration seems at stark contra-
diction with results reported in Ref. [8], which assert that in one
dimension, a single single-site perturbation may only change
a homogeneous configuration into another homogeneous
configuration. The explanation for this conundrum has to do
with the order in which we take the limits L → ∞ and p → 0.
Since in our study we take first the thermodynamic limit
L → ∞ and then the zero-field limit p → 0, the single-site
perturbations are recurrent, i.e., they can occur many times
during the dynamics. In that sense, the situation is similar to
cultural drift [8,21], except that the perturbation now is not
a noise but a constant field. Hence, the conclusions about the
single single-site perturbation [8], which corresponds to taking
the limit p → 0 first and then the limit L → ∞, do not apply
to our problem and so there is really no contradiction between
the two findings.

B. Field-free heterogeneous regime

We turn now to the problem that motivated this paper,
namely, the finding that the effect of a vanishingly small
external field is to turn the field-free heterogeneous steady
state into a field-induced homogeneous state in the limit
L → ∞ [11]. This result would then be analogous to the
homogenizing effect of an external noise that changes traits
at random with some small probability [21]. Alas, when
we consider very large lattice sizes, we find no evidence
of such mind-boggling effect neither in the one- nor in the
two-dimensional Axelrod’s model.

In Fig. 2, we show the average number of domains for
both static (upper panel) and consensus (lower panel) media.
We use filled symbols to display the results for the two
extreme values of the field intensity (p = 0 and 1), and unfilled
symbols for the intermediary field strengths. This figure
exhibits many noticeable results. The number of domains
is maximum in the case wherein only interactions with the
field are permitted (p = 1). Allowance of local interactions
between neighboring agents results in less heterogeneous
configurations, as expected. The surprise is that, even for finite
L, the average number of domains jumps to a lower value as
p departs infinitesimally from unity (the same phenomenon
happens in the two-dimensional model [11]). Although 〈Ndom〉
exhibits a smooth dependence on p ∈ (0,1), we observe
another jump (now to a higher diversity value) at p = 0.
The fact that these jumps occur at any finite value of L

implies that the heterogeneous absorbing configurations are
unstable to single-site changes. This conclusion is supported
by the fact that the number of domains (and the diversity, as
well) are reduced when the field or the local interactions are
turned on. Put differently, the number of domains decreases
(discontinuously) from p = 0 to p > 0 as well as from p = 1
to p < 1.
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FIG. 2. Normalized number of domains in the one-dimensional
model for the static (upper panel) and consensus (lower panel) media
as function of the chain size L. The filled symbols are for p = 1
(circles) and p = 0 (triangles), whereas the unfilled symbols are for
(top to bottom at L = 105) p = 0.99, 0.6, 0.2, and 0.01. The other
parameters are F = 5 and q = 10.

The finding that the field-free heterogeneous adsorbing
configurations are unstable even for finite L is in agreement
with the results of [8], but since now the perturbation is not
random (it is a spatially uniform external field) even when it is
recurrent (i.e., p is nonzero) it does not lead to a homogeneous
configuration, as would be the case if the perturbation were
random [8].

We note that for p = 1, the consensus media is fixed with
the traits reflecting the consensus values for the random initial
configuration of the agents. However, for finite L, the results
differ somewhat significantly from those of the static media
(see Fig. 2). Why is that? The reason is that the traits of the
static media are chosen randomly and independently of the also
random initial traits of the agents, whereas in the case of the
consensus media, the media traits are not independent from the
agents’ traits, being given by the majority rule. This correlation
has a strong effect for small chains, but becomes irrelevant for
large L since in this case the fraction of agents that share a
given media trait is not much greater than 1/q, which is the
expected value of this fraction for the static media. In fact,
the correlation between the media and the agents in the initial
configuration explains the dips observed in the lower panel of
Fig. 2 for p > 0 since it decreases the number of agents with
antagonistic traits with respect to the media, resulting in less
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FIG. 3. Extrapolation to L → ∞ of the normalized number of
domains in the one-dimensional model for the static (circles) and
consensus (triangle) media as function of the field strength p. At
p = 0, we find g∞ = 0.483 ± 0.001 and at p = 1 we find g∞ =
0.793 ± 0.001 for both media types. The inset shows the fitting of
the static media data by the function 0.38 + 0.6p2 (solid line) for
small p. The labels of the inset axes are the same as those of the main
figure. The parameters are F = 5 and q = 10.

fragmented configurations than in the case wherein the media
traits are set randomly. However, as pointed out before, this
effect disappears for large chains. Finally, we mention that
there is an interesting mapping between the case p = 1, where
the agents interact only with the field, and the site percolation:
an occupied node corresponds to an agent that has the features
of the external field and the occupation probability is given by
1 − (1 − 1/q)F [20].

The discontinuities at p = 0 and 1 are more easily visual-
ized in Fig. 3 where we present the extrapolation to infinite
chain sizes g∞ = limL→∞〈Ndom〉/L of the results exhibited in
Fig. 2. The results for both types of media are practically
indistinguishable. For p → 0, we find g∞ → 0.38 ± 0.01
whereas g∞ → 0.66 ± 0.01 for p → 1, which are valid for
both media types (see the legend of Fig. 3 for the values of
g∞ at p = 0 and 1). The important point here is that the data
offer no evidence whatsoever that g∞ would vanish in the limit
p → 0 (see the inset in Fig. 3). We should emphasize that the
decrease on the number of domains induced by a vanishingly
small field is the expected outcome of the assay since the small
field destabilizes some of the field-free domains, but lacks the
strength to create new field-induced domains.

In addition, we find that the average size of the largest
domain 〈Smax〉 grows as ln L for large L (data not shown),
whereas the size of a typical domain is on the order of 1,
regardless of the media type and strength. These findings are
similar to those reported for the majority-vote model [22].

IV. EXTERNAL FIELDS IN THE
TWO-DIMENSIONAL MODEL

We turn now to the study of the two-dimensional Ax-
elrod’s model, which is considerably more computationally
demanding than the analysis of the one-dimensional version
presented before. The effect of external fields on the field-free
homogeneous regime is well understood by now [14,15]: the
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FIG. 4. Normalized number of domains in the two-dimensional
model for the static (upper panel) and consensus (lower panel) media
as function of the linear size L of the square lattice. The filled symbols
are for p = 1 (circles) and p = 0 (triangles), whereas the unfilled
symbols are for (top to bottom at L = 103) p = 0.99, 0.4, 0.2, and
0.01. The other parameters are F = 2 and q = 8.

results are similar to those exhibited in Fig. 1 except for the
relative size of the largest domain which in the limit p → 0
tends to 1 in the two-dimensional case [15] and to 0 in the one
-dimensional version (lower panel of Fig. 1). Hence, we will
consider here only the effect of external fields on the field-free
heterogeneous regime. Moreover, we focus most our efforts
on the parameter set F = 2 and q = 8 rather than on the set
F = 5 and q = 30 of Ref. [11]. In both cases, the field-free
(p = 0) regime is heterogeneous, but simulations using our
parameter selection are much faster of course.

Accordingly, in Fig. 4 we present the dependence of the
average number of domains on the linear size of the square
lattice. The results are qualitatively similar to those obtained
for the one-dimensional model and summarized in Fig. 2. The
correlation between the consensus media and the agents results
in less heterogeneous absorbing configurations in comparison
with the configurations induced by the static media, but this
difference becomes negligible as the lattice size increases. This
correlation effect is less dramatic than in the one-dimensional
model because for the same value of L in the x axis, there are
many more agents (L2 to be precise) in the two-dimensional
lattice. The result of the extrapolation to infinite lattice sizes
using the definition g∞ = limL→∞〈Sdom〉/L2 is summarized
in Fig. 5. For p → 0, we find g∞ → 0.36 ± 0.01, whereas
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FIG. 5. Extrapolation to L → ∞ of the normalized number of
domains in the two-dimensional model for the static (circles) and
consensus (triangle) media as a function of the field strength p. The
results are indistinguishable for the two media types. At p = 0, we
find g∞ = 0.425 ± 0.001 and at p = 1 we find g∞ = 0.869 ± 0.001.
The inset shows the fitting of the static media data by the function
0.36 + 0.9p − 1.9p2 (solid line) for small p. The labels of the inset
axes are the same as those of the main figure. The parameters are
F = 2 and q = 8.

g∞ → 0.53 ± 0.01 for p → 1. As before, we observe
discontinuities at p = 0 and 1 which take place even for finite
L, and no evidence at all that the g∞ would tend to 0 in
the limit p → 0 as claimed by Ref. [11]. We note, however,
that extrapolation to L → ∞ using lattices of linear size up
to L = 70 as done in Ref. [11] may result in a significant
underestimate of g∞ since, especially for small p, one may
be misled by the transient region where gL ≡ 〈Ndom〉/L2

decreases abruptly with increasing L (see Fig. 4).
Our simulations for the selection of parameters F = 5 and

q = 30 used in Ref. [11] led to similar conclusions. As already
pointed out, the large relaxation times make an extensive
analysis of this parameter set prohibitive, so we used a small
number of samples (typically 100), which resulted in rather
noisy data points. For small lattice sizes (L < 70), our results
fully agree with those of [11].

V. LOCAL FIELD

Here, we consider a time and spatially nonuniform field
introduced in Ref. [11], referred to as local field (or media). For
a given target agent, the traits of this field reflect the consensus
trait of its nearest neighbors. Hence, it can be viewed as a
multistate variant of the majority-vote rule [22–27] since the
interaction with the local field features the main ingredients of
a majority-vote model: (i) pick a voter (target agent) at random,
(ii) find the consensus opinion among its neighbors (the con-
sensus is obtained by the majority-vote rule), and (iii) the voter
assumes the consensus opinion. In that sense, we are reluctant
to characterize it as a media, much less as a mass media. In fact,
its local nature sets it apart from the static and consensus fields
studied in the previous sections, which are spatially uniform
fields, and so we see no reason to assume the system will
behave similarly under the effect of such diverse fields.
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FIG. 6. Normalized number of domains in the one-dimensional
model for the local field as a function of the chain size L. The filled
symbols are for p = 1 (circles) and p = 0 (triangles), whereas the
unfilled symbols are for p = 0.99. The solid curve is 1/L and the
other parameters are F = 5 and q = 10.

The overly distinct effect of the local field on the steady
state of Axelrod’s model is illustrated in Fig. 6 for the one-
dimensional variant. Most interestingly, in this case, the steady
state is less heterogeneous when the agents interact with the
field only (p = 1) than when the field is off (p = 0). This is a
peculiarity of the one-dimensional model which suits well to
illustrate the tendency to homogenization of the local field. The
results for all values of p ∈ (0,1) are indistinguishable from
that exhibited in the figure for p = 0.99, which shows the
dominance of homogeneous absorbing configurations already
for small chains. In fact, for L > 50, the data points fall on
the curve 1/L shown in the figure. So, in the thermodynamic
limit, the steady state is spatially uniform except in the two
extreme cases p = 0 and 1. A glance at the results exhibited
in Fig. 6 for the local field and in Fig. 2 for the global fields
reveals the great disparity of the effect of these fields on the
steady-state properties of Axelrod’s model.

Figure 7 shows the results of the local field in the two-
dimensional Axelrod model. These simulations are incredibly
time consuming for p ∈ (0,1) due to the tendency to homoge-
nization of the agents’ cultural traits and the constant need to
update the local fields. Hence, our simulations are restricted to
L < 200 and 103 samples only. As in the one-dimensional
case, the simulation data in this range of p is practically
indistinguishable within the numerical error and so we present
only the results for p = 0.9. However, the data do not fall
on the curve 1/L2 (solid line in the figure), which would
signal the existence of a single domain. Rather, the scaled
number of domains seems to go to zero much slower than
L−2 as the lattice size increases. This means that the average
(non-normalized) number of domains grows with Lα with
α < 2, i.e., it is nonextensive in presence of the local field. Of
course, the small lattice sizes as well as the reduced number
of samples used in this analysis do not allow us to make
quantitative claims on the scaling laws for large L. We note that
it was this difficulty to make inferences on the effect of the local
field (even for a more manageable parameter set than that used
in Ref. [11]) that motivated our analysis of the one-dimensional
model. Finally, we note that the absorbing configurations are
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FIG. 7. Normalized number of domains in the two-dimensional
model for the local field as a function of the linear size L of the
square lattice. The filled symbols are for p = 1 (circles) and p = 0
(triangles), whereas the unfilled symbols are for p = 0.9. The solid
curve is 1/L2 and the other parameters are F = 2 and q = 8.

more heterogeneous for p = 1 than for p = 0 in contrast to
our findings for the one-dimensional model.

VI. CONCLUSION

In our effort to clarify the effects of spatially uniform fields
(interpreted as mass media) as well as of nonuniform fields
on Axelrod’s model, we have unveiled several features of this
well studied model of social influence.

First and foremost, we have revised the result that in
the thermodynamic limit the field-free heterogeneous regime
becomes homogeneous in the limit of vanishingly small fields,
i.e., p → 0 regardless of the type of the field [11]. More
pointedly, we find that in the presence of a local field, the
steady state does indeed become homogeneous but for all
p ∈ (0,1). This is so because the local field implements a
majority-vote rule among the nearest neighbors of the target
agent and so, when allied to the homogenizing interaction rule
of Axelrod’s model, it constitutes an insuperable force towards
homogenization. However, we find that the system remains
heterogeneous in the presence of the spatially uniform fields
which were originally introduced in Axelrod’s model to study
the effect of mass media on opinion formation [9].

Second, we find that the spatially uniform but time-varying
consensus media introduced in Ref. [9] and the static media
yield the same results in the thermodynamic limit. It seems that
the reason they produce different outcomes for small lattices
is the correlation between the consensus field and the agents
in the random initial configuration. This correlation becomes
less pronounced for large lattices since even after application
of the consensus rule, there will be a rough balance between the
values of the traits of a same entry of the feature vector. From
the statistical mechanics perspective, this is an important result
because it allows us to make inferences about a more realistic
media type using the much easier to simulate static media.

Third, we find that the heterogeneous absorbing configura-
tions at p = 0 and 1 are unstable. This instability is reflected
by the discontinuities that take place at those values even
for finite lattices. Otherwise, the measures used to describe

the steady state (i.e., average number of domains and size
of the largest domain) are continuous functions of p in the
range p ∈ (0,1). The field-free homogeneous configurations
for finite L are stable in both one and two dimensions.
However, in the thermodynamic limit, they become unstable
in one dimension (lower panel of Fig. 1) but remain stable in
two dimensions [15]. We note that the instability produced by
the external fields draws the system to stable (or metastable)
configurations of a quite distinct nature than those deriving
from noisy perturbations [8,21].

Fourth, we find that the one-dimensional version of Ax-
elrod’s model [7] yields essentially the same results as the
more popular two-dimensional version. In particular, our
findings about the impact of the three field types on the
field-free heterogeneous regime of the two-dimensional model
were corroborated by the one-dimensional model. Although
this model exhibits some peculiarities, which were properly
highlighted in the text, it can serve as an exceptional guide to
our understanding of features that are difficult to unveil in the
two-dimensional version, such as the effect of local fields.

The characterization of the absorbing configurations of
Axelrod’s model in the thermodynamic limit, regardless of
whether or not in the presence of a field (media), remains
a challenge to statistical mechanics. In fact, we do not
know much about the location and the nature of the phase
transition in the (q,F ) space [2,4], due mainly to the huge
relaxation times the dynamics needs to settle in a homogeneous
configuration, which grows as N2 where N is the number of
lattice sites [7]. In that sense, the appearance of counterintuitive
results about the steady-state properties of Axelrod’s model
in the thermodynamic limit should not be surprising. This
situation is worsened by the presence of a field since lattices
of intermediate sizes exhibit somewhat perversely a regime
distinct from the thermodynamic one (see Fig. 1).

Nevertheless, we think that we have reached by now a good
qualitative understanding of the effects of spatially uniform
(mass media) as well as nonuniform (local) fields on the
statistical properties of the two-dimensional Axelrod model.
In the field-free homogeneous regime case, the presence of
a vanishingly small field (i.e., p 	 1) leads to the breaking
of the single monocultural domain into a macroscopic domain
(media) and a multitude of microscopic domains which occupy
a finite area of the lattice [15]. The scenario is different in
the one-dimensional model where the field pulverizes the
giant domain into microscopic domains as shown in the
lower panel of Fig. 1. Regarding the field-free heterogeneous
regime case, which was our main concern in this paper, the
presence of a spatially uniform field does not produce cultural
homogenization, regardless of the field strength p. In contrast,
a local field that implements the majority-vote rule among the
neighbors of the target agent leads to a homogeneous steady
state for p < 1.
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