33 research outputs found

    Cell autonomous regulation of herpes and influenza virus infection by the circadian clock.

    Get PDF
    Viruses are intracellular pathogens that hijack host cell machinery and resources to replicate. Rather than being constant, host physiology is rhythmic, undergoing circadian (∼24 h) oscillations in many virus-relevant pathways, but whether daily rhythms impact on viral replication is unknown. We find that the time of day of host infection regulates virus progression in live mice and individual cells. Furthermore, we demonstrate that herpes and influenza A virus infections are enhanced when host circadian rhythms are abolished by disrupting the key clock gene transcription factor Bmal1. Intracellular trafficking, biosynthetic processes, protein synthesis, and chromatin assembly all contribute to circadian regulation of virus infection. Moreover, herpesviruses differentially target components of the molecular circadian clockwork. Our work demonstrates that viruses exploit the clockwork for their own gain and that the clock represents a novel target for modulating viral replication that extends beyond any single family of these ubiquitous pathogens.A.B.R. acknowledges funding from the Wellcome Trust (083643/Z/07/Z, 100333/Z/12/Z and 100574/Z/12/Z), the European Research Council (ERC Starting Grant No. 281348, MetaCLOCK), the EMBO Young Investigators Programme, the Lister Institute of Preventative Medicine and the Medical Research Council (MRC_MC_UU_12012/5). A.D.N acknowledges funding from the People Programme (Marie Curie Actions) of the European Union Seventh Framework Programme (FP7/2007-2013; REA grant agreement 627630). We thank L. Ansel-Bollepalli for assistance with animal breeding, I. Robinson for assistance with pilot animal experiments, A. Snijders and H. Flynn (Francis Crick Institute Proteomics Core) for help with proteomics work, Cambridge NIHR BRC Cell Phenotyping Hub for flow cytometry assistance, A. Miyawaki (RIKEN Brain Science Institute, Japan) for Fucci2 lentiviral vectors, and H. Coleman, J. May and M. Jain for helpful discussions. We thank Prof J. Bass (Northwestern University, USA) for Bmal-/- mouse embryonic fibroblasts used in preliminary experiments, and N. Heaton and P. Palese (Icahn School of Medicine at Mount Sinai, USA) for PB2::Gaussia luciferase IAV (PR8 PB2::GLUC).This is the author accepted manuscript. The final version is available from the National Academy of Sciences via http://dx.doi.org/10.1073/pnas.160189511

    Deep-coverage spatiotemporal proteome of the picoeukaryote Ostreococcus tauri reveals differential effects of environmental and endogenous 24-hour rhythms.

    Get PDF
    The cellular landscape changes dramatically over the course of a 24 h day. The proteome responds directly to daily environmental cycles and is additionally regulated by the circadian clock. To quantify the relative contribution of diurnal versus circadian regulation, we mapped proteome dynamics under light:dark cycles compared with constant light. Using Ostreococcus tauri, a prototypical eukaryotic cell, we achieved 85% coverage, which allowed an unprecedented insight into the identity of proteins that facilitate rhythmic cellular functions. The overlap between diurnally- and circadian-regulated proteins was modest and these proteins exhibited different phases of oscillation between the two conditions. Transcript oscillations were generally poorly predictive of protein oscillations, in which a far lower relative amplitude was observed. We observed coordination between the rhythmic regulation of organelle-encoded proteins with the nuclear-encoded proteins that are targeted to organelles. Rhythmic transmembrane proteins showed a different phase distribution compared with rhythmic soluble proteins, indicating the existence of a circadian regulatory process specific to the biogenesis and/or degradation of membrane proteins. Our observations argue that the cellular spatiotemporal proteome is shaped by a complex interaction between intrinsic and extrinsic regulatory factors through rhythmic regulation at the transcriptional as well as post-transcriptional, translational, and post-translational levels

    PKA and PDE4D3 anchoring to AKAP9 provides distinct regulation of cAMP signals at the centrosome

    Get PDF
    Previous work has shown that the protein kinase A (PKA)–regulated phosphodiesterase (PDE) 4D3 binds to A kinase–anchoring proteins (AKAPs). One such protein, AKAP9, localizes to the centrosome. In this paper, we investigate whether a PKA–PDE4D3–AKAP9 complex can generate spatial compartmentalization of cyclic adenosine monophosphate (cAMP) signaling at the centrosome. Real-time imaging of fluorescence resonance energy transfer reporters shows that centrosomal PDE4D3 modulated a dynamic microdomain within which cAMP concentration selectively changed over the cell cycle. AKAP9-anchored, centrosomal PKA showed a reduced activation threshold as a consequence of increased autophosphorylation of its regulatory subunit at S114. Finally, disruption of the centrosomal cAMP microdomain by local displacement of PDE4D3 impaired cell cycle progression as a result of accumulation of cells in prophase. Our findings describe a novel mechanism of PKA activity regulation that relies on binding to AKAPs and consequent modulation of the enzyme activation threshold rather than on overall changes in cAMP levels. Further, we provide for the first time direct evidence that control of cell cycle progression relies on unique regulation of centrosomal cAMP/PKA signals

    Cardiac hypertrophy is inhibited by a local pool of cAMP regulated by phosphodiesterase 2

    Get PDF
    Rationale: Chronic elevation of 3'-5'-cyclic adenosine monophosphate (cAMP) levels has been associated with cardiac remodelling and cardiac hypertrophy. However, enhancement of particular aspects of cAMP/protein kinase A (PKA) signalling appears to be beneficial for the failing heart. cAMP is a pleiotropic second messenger with the ability to generate multiple functional outcomes in response to different extracellular stimuli with strict fidelity, a feature that relies on the spatial segregation of the cAMP pathway components in signalling microdomains. Objective: How individual cAMP microdomains impact on cardiac pathophysiology remains largely to be established. The cAMP-degrading enzymes phosphodiesterases (PDEs) play a key role in shaping local changes in cAMP. Here we investigated the effect of specific inhibition of selected PDEs on cardiac myocyte hypertrophic growth. Methods and Results: Using pharmacological and genetic manipulation of PDE activity we found that the rise in cAMP resulting from inhibition of PDE3 and PDE4 induces hypertrophy whereas increasing cAMP levels via PDE2 inhibition is anti-hypertrophic. By real-time imaging of cAMP levels in intact myocytes and selective displacement of PKA isoforms we demonstrate that the anti-hypertrophic effect of PDE2 inhibition involves the generation of a local pool of cAMP and activation of a PKA type II subset leading to phosphorylation of the nuclear factor of activated T cells (NFAT). Conclusions: Different cAMP pools have opposing effects on cardiac myocyte cell size. PDE2 emerges as a novel key regulator of cardiac hypertrophy in vitro and in vivo and its inhibition may have therapeutic applications

    The Pentose Phosphate Pathway Regulates the Circadian Clock

    Get PDF
    The circadian clock is a ubiquitous timekeeping system that organizes the behavior and physiology of organisms over the day and night. Current models rely on transcriptional networks that coordinate circadian gene expression of thousands of transcripts. However, recent studies have uncovered phylogenetically conserved redox rhythms that can occur independently of transcriptional cycles. Here we identify the pentose phosphate pathway (PPP), a critical source of the redox cofactor NADPH, as an important regulator of redox and transcriptional oscillations. Our results show that genetic and pharmacological inhibition of the PPP prolongs the period of circadian rhythms in human cells, mouse tissues, and fruit flies. These metabolic manipulations also cause a remodeling of circadian gene expression programs that involves the circadian transcription factors BMAL1 and CLOCK, and the redox-sensitive transcription factor NRF2. Thus, the PPP regulates circadian rhythms via NADPH metabolism, suggesting a pivotal role for NADPH availability in circadian timekeeping.Peer reviewe

    CRYPTOCHROMES promote daily protein homeostasis.

    Get PDF
    The daily organisation of most mammalian cellular functions is attributed to circadian regulation of clock-controlled protein expression, driven by daily cycles of CRYPTOCHROME-dependent transcriptional feedback repression. To test this, we used quantitative mass spectrometry to compare wild-type and CRY-deficient fibroblasts under constant conditions. In CRY-deficient cells, we found that temporal variation in protein, phosphopeptide, and K+ abundance was at least as great as wild-type controls. Most strikingly, the extent of temporal variation within either genotype was much smaller than overall differences in proteome composition between WT and CRY-deficient cells. This proteome imbalance in CRY-deficient cells and tissues was associated with increased susceptibility to proteotoxic stress, which impairs circadian robustness, and may contribute to the wide-ranging phenotypes of CRY-deficient mice. Rather than generating large-scale daily variation in proteome composition, we suggest it is plausible that the various transcriptional and post-translational functions of CRY proteins ultimately act to maintain protein and osmotic homeostasis against daily perturbation

    Author Correction: Distinct circadian mechanisms govern cardiac rhythms and susceptibility to arrhythmia

    Get PDF
    From Springer Nature via Jisc Publications RouterHistory: registration 2021-11-25, collection 2021-12, pub-electronic 2021-12-08, online 2021-12-08Publication status: Publishe

    Compensatory ion transport buffers daily protein rhythms to regulate osmotic balance and cellular physiology

    Get PDF
    Abstract: Between 6–20% of the cellular proteome is under circadian control and tunes mammalian cell function with daily environmental cycles. For cell viability, and to maintain volume within narrow limits, the daily variation in osmotic potential exerted by changes in the soluble proteome must be counterbalanced. The mechanisms and consequences of this osmotic compensation have not been investigated before. In cultured cells and in tissue we find that compensation involves electroneutral active transport of Na+, K+, and Cl− through differential activity of SLC12A family cotransporters. In cardiomyocytes ex vivo and in vivo, compensatory ion fluxes confer daily variation in electrical activity. Perturbation of soluble protein abundance has commensurate effects on ion composition and cellular function across the circadian cycle. Thus, circadian regulation of the proteome impacts ion homeostasis with substantial consequences for the physiology of electrically active cells such as cardiomyocytes

    Call for emergency action to restore dietary diversity and protect global food systems in times of COVID-19 and beyond: Results from a cross-sectional study in 38 countries

    Get PDF
    Background: The COVID-19 pandemic has revealed the fragility of the global food system, sending shockwaves across countries' societies and economy. This has presented formidable challenges to sustaining a healthy and resilient lifestyle. The objective of this study is to examine the food consumption patterns and assess diet diversity indicators, primarily focusing on the food consumption score (FCS), among households in 38 countries both before and during the first wave of the COVID-19 pandemic. Methods: A cross-sectional study with 37 207 participants (mean age: 36.70 ± 14.79, with 77 % women) was conducted in 38 countries through an online survey administered between April and June 2020. The study utilized a pre-tested food frequency questionnaire to explore food consumption patterns both before and during the COVID-19 periods. Additionally, the study computed Food Consumption Score (FCS) as a proxy indicator for assessing the dietary diversity of households. Findings: This quantification of global, regional and national dietary diversity across 38 countries showed an increment in the consumption of all food groups but a drop in the intake of vegetables and in the dietary diversity. The household's food consumption scores indicating dietary diversity varied across regions. It decreased in the Middle East and North Africa (MENA) countries, including Lebanon (p < 0.001) and increased in the Gulf Cooperation Council countries including Bahrain (p = 0.003), Egypt (p < 0.001) and United Arab Emirates (p = 0.013). A decline in the household's dietary diversity was observed in Australia (p < 0.001), in South Africa including Uganda (p < 0.001), in Europe including Belgium (p < 0.001), Denmark (p = 0.002), Finland (p < 0.001) and Netherland (p = 0.027) and in South America including Ecuador (p < 0.001), Brazil (p < 0.001), Mexico (p < 0.0001) and Peru (p < 0.001). Middle and older ages [OR = 1.2; 95 % CI = [1.125–1.426] [OR = 2.5; 95 % CI = [1.951–3.064], being a woman [OR = 1.2; 95 % CI = [1.117–1.367], having a high education (p < 0.001), and showing amelioration in food-related behaviors [OR = 1.4; 95 % CI = [1.292–1.709] were all linked to having a higher dietary diversity. Conclusion: The minor to moderate changes in food consumption patterns observed across the 38 countries within relatively short time frames could become lasting, leading to a significant and prolonged reduction in dietary diversity, as demonstrated by our findings.Revisión por pare
    corecore