89 research outputs found

    Direction-sensitive graphene flow sensor

    Full text link
    Graphene flow sensors hold great prospects for applications, but also encounter many difficulties, such as unwanted electrochemical phenomena, low measurable signal and limited dependence on the flow direction. This study proposes a novel approach allowing for the detection of a flow direction-dependent electric signal in aqueous solutions of salts, acids and bases. The key element in the proposed solution is the use of a reference electrode which allows external gating of the graphene structure. Using external gating enables to enhance substantially the amplitude of the flow-generated signal. Simultaneous measurement of the reference electrode current allows us to recover a flow-direction-sensitive component of the flow-induced voltage in graphene. The obtained results are discussed in terms of the Coulomb interaction and other phenomena which can be present at the interface of graphene with the aqueous solution.Comment: 7 pages, 6 figure

    Excitonic luminescence of the I2_2-intercalated HfS2_2

    Full text link
    Photoluminescence from bulk HfS2_2 grown by the chemical vapor transport (CVT) method is reported. A series of emission lines is apparent at low temperature in the energy range of 1.4 - 1.5 eV. Two groups of the observed excitonic transitions followed by their replicas involving acoustic and optical phonons are distinguished using classical intensity correlation analysis. The emission is attributed to the recombination of excitons bound to iodine (I2_2) molecules intercalated between layers of HfS2_2. The I2_2 molecules are introduced to the crystal during the growth as halogen transport agents in the CVT growth process. Their presence in the crystal is confirmed by secondary ion mass spectroscopy.Comment: 5 pages, 6 figure

    Heme oxygenase-1 is required for angiogenic function of bone marrow-derived progenitor cells : role in therapeutic revascularization

    Get PDF
    Aims: Heme oxygenase-1 (HO-1) is a cytoprotective enzyme that can be down-regulated in diabetes. Its importance for mature endothelium has been described, but its role in proangiogenic progenitors is not well known. We investigated the effect of HO-1 on the angiogenic potential of bone marrow-derived cells (BMDCs) and on blood flow recovery in ischemic muscle of diabetic mice. Results: Lack of HO-1 decreased the number of endothelial progenitor cells (Lin−CD45−cKit-Sca-1+VEGFR-2+) in murine bone marrow, and inhibited the angiogenic potential of cultured BMDCs, affecting their survival under oxidative stress, proliferation, migration, formation of capillaries, and paracrine proangiogenic potential. Transcriptome analysis of HO-1−/− BMDCs revealed the attenuated up-regulation of proangiogenic genes in response to hypoxia. Heterozygous HO-1+/− diabetic mice subjected to hind limb ischemia exhibited reduced local expression of vascular endothelial growth factor (VEGF), placental growth factor (PlGF), stromal cell-derived factor 1 (SDF-1), VEGFR-1, VEGFR-2, and CXCR-4. This was accompanied by impaired revascularization of ischemic muscle, despite a strong mobilization of bone marrow-derived proangiogenic progenitors (Sca-1+CXCR-4+) into peripheral blood. Blood flow recovery could be rescued by local injections of conditioned media harvested from BMDCs, but not by an injection of cultured BMDCs. Innovation: This is the first report showing that HO-1 haploinsufficiency impairs tissue revascularization in diabetes and that proangiogenic in situ response, not progenitor cell mobilization, is important for blood flow recovery. Conclusions: HO-1 is necessary for a proper proangiogenic function of BMDCs. A low level of HO-1 in hyperglycemic mice decreases restoration of perfusion in ischemic muscle, which can be rescued by a local injection of conditioned media from cultured BMDCs

    Consequence of one-electron oxidation and one-electron reduction for aniline

    Get PDF
    Quantum-chemical calculations were performed for all possible isomers of neutral aniline and its redox forms, and intramolecular proton-transfer (prototropy) accompanied by π-electron delocalization was analyzed. One-electron oxidation (PhNH2 – e → [PhNH2]+•) has no important effect on tautomeric preferences. The enamine tautomer is preferred for oxidized aniline similarly as for the neutral molecule. Dramatical changes take place when proceeding from neutral to reduced aniline. One-electron reduction (PhNH2 + e → [PhNH2]-•) favors the imine tautomer. Independently on the state of oxidation, π- and n-electrons are more delocalized for the enamine than imine tautomers. The change of the tautomeric preferences for reduced aniline may partially explain the origin of the CH tautomers for reduced nucleobases (cytosine, adenine, and guanine)

    The effect of climate change on avian offspring production: A global meta-analysis

    Get PDF
    Climate change affects timing of reproduction in many bird species, but few studies have investigated its influence on annual reproductive output. Here, we assess changes in the annual production of young by female breeders in 201 populations of 104 bird species (N = 745,962 clutches) covering all continents between 1970 and 2019. Overall, average offspring production has declined in recent decades, but considerable differences were found among species and populations. A total of 56.7% of populations showed a declining trend in offspring production (significant in 17.4%), whereas 43.3% exhibited an increase (significant in 10.4%). The results show that climatic changes affect offspring production through compounded effects on ecological and life history traits of species. Migratory and larger-bodied species experienced reduced offspring production with increasing temperatures during the chick-rearing period, whereas smaller-bodied, sedentary species tended to produce more offspring. Likewise, multi-brooded species showed increased breeding success with increasing temperatures, whereas rising temperatures were unrelated to repro- ductive success in single-brooded species. Our study suggests that rapid declines in size of bird populations reported by many studies from different parts of the world are driven only to a small degree by changes in the production of young

    Dielectric Function Theory Calculations of Polaritons in GaN

    No full text
    Properties of polaritons (free excitons coupled with photons of similar energy) in gallium nitride are investigated by performing calculations based on dielectric function theory including all three excitons A, B and C (characteristic for the wurtzite structure). Moreover the excited states of excitons have been taken into account by adding Elliott's components to dielectric function. Energies, polarizabilities and damping constants of excitons are determined. It is shown that due to inter-exciton interactions the B and C excitons are strongly damped. It is estimated that the characteristic time of B to A relaxation is tBA\text{}_{BA}=1 ps. The exciton C lifetime is estimated τC\text{}_{C}=0.2 ps
    corecore