179 research outputs found

    Reward Sensitivity for a Palatable Food Reward Peaks During Pubertal Developmental in Rats

    Get PDF
    Puberty is a critical period for the initiation of drug use and abuse. Because early drug use onset often accounts for a more severe progression of addiction, it is of importance to understand the underlying mechanisms and neurodevelopmental changes during puberty that are contributing to enhanced reward processing in teenagers. The present study investigated the progression of reward sensitivity toward a natural food reward over the whole course of adolescence in male rats (postnatal days 30–90) by monitoring consummatory, motivational behavior and neurobiological correlates of reward. Using a limited-free intake paradigm, consumption of sweetened condensed milk (SCM) was measured repeatedly in adolescent and adult rats. Additionally, early- and mid-pubertal animals were tested in Progressive Ratio responding for SCM and c-fos protein expression in reward-associated brain structures was examined after odor conditioning for SCM. We found a transient increase in SCM consumption and motivational incentive for SCM during puberty. This increased reward sensitivity was most pronounced around mid-puberty. The behavioral findings are paralleled by enhanced c-fos staining in reward-related structures revealing an intensified neuronal response after reward-cue presentation, distinctive for pubertal animals. Taken together, these data indicate an increase in reward sensitivity during adolescence accompanied by enhanced responsiveness of reward-associated brain structures to incentive stimuli, and it seems that both is strongly pronounced around mid-puberty. Therefore, higher reward sensitivity during pubertal maturation might contribute to the enhanced vulnerability of teenagers for the initiation of experimental drug use

    Adeno-associated virus (AAV)-mediated suppression of Ca2+/calmodulin kinase IV activity in the nucleus accumbens modulates emotional behaviour in mice

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Calcium/calmodulin-dependent protein kinase IV (CaMKIV) controls activity-dependent gene transcription by regulating the activity of the cyclic AMP response element binding protein (CREB). This signaling pathway is involved in gating emotional responses in the CNS but previous studies did not address the potential roles of CaMKIV in discrete brain regions. In the present study, we aimed at specifically dissecting the role of CaMKIV in the nucleus accumbens of adult mice.</p> <p>Results</p> <p>We used recombinant adeno-associated virus (rAAV)-mediated gene transfer of a dominant-negative CaMKIV variant (rAAV-dnCaMKIV) to inhibit endogenous CaMKIV in the nucleus accumbens. rAAV-dnCaMKIV treated animals were subjected to a battery of tests including, prepulse inhibition of the acoustic startle response, open field, social interaction and anxiety-related behaviour. We found that basal locomotor activity in the open field, and prepulse inhibition or startle performance were unaltered in mice infected with rAAV-dnCaMKIV in the nucleus accumbens. However, anxiogenic effects were revealed in social interaction testing and the light/dark emergence test.</p> <p>Conclusion</p> <p>Our findings suggest a modulatory role of CaMKIV in the nucleus accumbens in anxiety-like behaviour but not sensorimotor gating.</p

    Incentive learning underlying cocaine relapse requires mGluR5 receptors located on dopamine D1 receptor-expressing neurons

    Get PDF
    Understanding the psychobiological basis of relapse remains a challenge in developing therapies for drug addiction. Relapse in cocaine addiction often occurs following exposure to environmental stimuli previously associated with drug taking. The metabotropic glutamate receptor, mGluR5, is potentially important in this respect; it plays a central role in several forms of striatal synaptic plasticity proposed to underpin associative learning and memory processes that enable drug-paired stimuli to acquire incentive motivational properties and trigger relapse. Using cell type-specific RNA interference, we have generated a novel mouse line with a selective knock-down of mGluR5 in dopamine D1 receptor-expressing neurons. Although mutant mice self-administer cocaine, we show that reinstatement of cocaine-seeking induced by a cocaine-paired stimulus is impaired. By examining different aspects of associative learning in the mutant mice, we identify deficits in specific incentive learning processes that enable a reward-paired stimulus to directly reinforce behavior and to become attractive, thus eliciting approach toward it. Our findings show that glutamate signaling through mGluR5 located on dopamine D1 receptor-expressing neurons is necessary for incentive learning processes that contribute to cue-induced reinstatement of cocaine-seeking and which may underpin relapse in drug addiction

    Genetic deletion of neuronal PPARγ enhances the emotional response to acute stress and exacerbates anxiety: An effect reversed by rescue of amygdala PPARγ function

    Get PDF
    PPARγ is one of the three isoforms of the Peroxisome Proliferator-Activated Receptors (PPARs). PPARγ is activated by thiazolidinediones such as pioglitazone, and it is targeted to treat insulin resistance. PPARγ is densely expressed in brain areas involved in regulation of motivational and emotional processes.Here, we investigated the role of PPARγ in the brain and explored its role in anxiety and stress responses in mice. The results show that stimulation of PPARγ by pioglitazone did not affect basal anxiety but fully prevented the anxiogenic effect of acute stress. Using mice with genetic ablation of neuronal PPARγ (PPARγ(NestinCre)), we demonstrated that a lack of receptors, specifically in neurons, exacerbated basal anxiety and enhanced stress sensitivity. The administration of GW9662, a selective PPARγ antagonist, elicited a marked anxiogenic response in PPARγ wild-type (Wt) but not in PPARγ(NestinCre) KO mice. Using c-Fos immunohistochemistry we observed that acute stress exposure resulted in a different pattern of neuronal activation in the amygdala and the hippocampus of PPARγ(NestinCre) KO mice compared with Wt mice. No differences were found between Wt and KO mice in hypothalamic regions responsible for hormonal response to stress, nor in blood corticosterone levels. Microinjection of pioglitazone, into the amygdala but not into the hippocampus abolished the anxiogenic response elicited by acute stress. Results also showed that in both regions PPARγ co-localizes with GABAergic cells. These findings demonstrate that neuronal PPARγ is involved the regulation of the stress response, and that the amygdala is a key substrate for the anxiolytic effect of PPARγ

    Coordinated prefrontal state transition leads extinction of reward-seeking behaviors

    Get PDF
    Extinction learning suppresses conditioned reward responses and is thus fundamental to adapt to changing environmental demands and to control excessive reward seeking. The medial prefrontal cortex (mPFC) monitors and controls conditioned reward responses. Abrupt transitions in mPFC activity anticipate changes in conditioned responses to altered contingencies. It remains, however, unknown whether such transitions are driven by the extinction of old behavioral strategies or by the acquisition of new competing ones. Using in vivo multiple single-unit recordings of mPFC in male rats, we studied the relationship between single-unit and population dynamics during extinction learning, using alcohol as a positive reinforcer in an operant conditioning paradigm. To examine the fine temporal relation between neural activity and behavior, we developed a novel behavioral model that allowed us to identify the number, onset, and duration of extinction-learning episodes in the behavior of each animal. We found that single-unit responses to conditioned stimuli changed even under stable experimental conditions and behavior. However, when behavioral responses to task contingencies had to be updated, unit-specific modulations became coordinated across the whole population, pushing the network into a new stable attractor state. Thus, extinction learning is not associated with suppressed mPFC responses to conditioned stimuli, but is anticipated by single-unit coordination into population-wide transitions of the internal state of the animal

    Nicotine self-administration and ERK signaling are altered in RasGRF2 knockout mice

    Get PDF
    Ras/Raf/MEK/ERK (Ras-ERK) signaling has been demonstrated to play a role in the effects of drugs of abuse such as cocaine and alcohol, but has not been extensively examined in nicotine-related reward behaviors. We examined the role of Ras Guanine Nucleotide Releasing Factor 2 (RasGRF2), an upstream mediator of the Ras-ERK signaling pathway, on nicotine self-administration (SA) in RasGRF2 KO and WT mice. We first demonstrated that acute nicotine exposure (0.4 mg/kg) resulted in an increase in phosphorylated ERK1/2 (pERK1/2) in the striatum, consistent with previous reports. We also demonstrated that increases in pERK1/2 resulting from acute (0.4 mg/kg) and repeated (0.4 mg/kg, 10 daily injections) exposure to nicotine in WT mice were not present in RasGRF2 KO mice, confirming that RasGRF2 at least partly regulates the activity of the Ras-ERK signaling pathway following nicotine exposure. We then performed intravenous nicotine SA (0.03 mg/kg/infusion for 10 days) in RasGRF2 KO and WT mice. Consistent with a previous report using cocaine SA, RasGRF2 KO mice demonstrated an increase in nicotine SA relative to WT controls. These findings suggest a role for RasGRF2 in the reinforcing effects of nicotine, and implicate the Ras-ERK signaling pathway as a common mediator of the response to drugs of abuse

    The inhibition of RasGRF2, but not RasGRF1, alters cocaine reward in mice

    Get PDF
    Ras/Raf/MEK/ERK(Ras-ERK) signaling has been implicated in the effects of drugs of abuse. Inhibitors of MEK1/2, the kinases upstream of ERK1/2, have been critical in defining the role of the Ras-ERK cascade in drug-dependent alterations in behavioral plasticity, but the Ras family of small GTPases has not been extensively examined in drug-related behaviors. We examined the role of Ras Guanine Nucleotide Releasing Factor 1(RasGRF1) and 2(RasGRF2), upstream regulators of the Ras-ERK signaling cascade, on cocaine self-administration(SA) in male mice. We first established a role for Ras-ERK signaling in cocaine SA, demonstrating that pERK1/2 is upregulated following SA in C57Bl/6N mice in striatum. We then compared RasGRF1 and RasGRF2 knock-out(KO) mouse lines, demonstrating that cocaine SA in RasGRF2 KO mice was increased relative to wild-type(WT) controls, while RasGRF1 KO and WT mice did not differ. This effect in RasGRF2 mice is likely mediated by the Ras-ERK signaling pathway, as pERK1/2 upregulation following cocaine SA was absent in RasGRF2 KO mice. Interestingly, the lentiviral knockdown of RasGRF2 in the NAc had the opposite effect to that in RasGRF2 KO mice, reducing cocaine SA. We subsequently demonstrated that the MEK inhibitor PD325901 administered peripherally prior to cocaine SA increased cocaine intake, replicating the increase seen in RasGRF2 KO mice, while PD325901 administered into the NAc decreased cocaine intake, similar to the effect seen following lentiviral knockdown of RasGRF2. These data indicate a role for RasGRF2 in cocaine SA in mice that is ERK-dependent, and suggest a differential effect of global versus site-specific RasGRF2 inhibition

    Mechanisms of disturbed emotion processing and social interaction in borderline personality disorder: state of knowledge and research agenda of the German Clinical Research Unit

    Get PDF
    The last two decades have seen a strong rise in empirical research in the mechanisms of emotion dysregulation in borderline personality disorder. Major findings comprise structural as well as functional alterations of brain regions involved in emotion processing, such as amygdala, insula, and prefrontal regions. In addition, more specific mechanisms of disturbed emotion regulation, e.g. related to pain and dissociation, have been identified. Most recently, social interaction problems and their underlying neurobiological mechanisms, e.g. disturbed trust or hypersensitivity to social rejection, have become a major focus of BPD research. This article covers the current state of knowledge and related relevant research goals. The first part presents a review of the literature. The second part delineates important open questions to be addressed in future studies. The third part describes the research agenda for a large German center grant focusing on mechanisms of emotion dysregulation in BPD

    Drinking Levels and Profiles of Alcohol Addicted Rats Predict Response to Nalmefene

    Get PDF
    Background: Pharmacotherapeutic options supporting the treatment of alcohol dependence are recommended and available but underutilized, partly due to questions about efficacy. Nalmefene, a μ-opioid receptor antagonist and partial kappa receptor agonist, is recommended for reduction of alcohol consumption, but evidence about its effectiveness has been equivocal; identifying factors which predict response will help optimize treatment.Methods: The alcohol deprivation effect paradigm is a tightly controlled procedure comprising repeated deprivation and reintroduction phases, leading to increased preference for alcohol; reintroduction approximates relapse. Using a digital drinkometer system measuring high-resolution drinking behavior, we examined the effects of nalmefene on relapse drinking behavior in alcohol addicted rats. We also tested whether drinking behavior in the relapse phase prior to nalmefene administration predicted treatment response. We further examined whether longitudinal drinking behavior and locomotor activity predicted treatment response.Results: Our results showed that nalmefene (0.3 mg/kg) reduced relapse-like consumption significantly (∼20%) compared to vehicle on the first 2 days of alcohol reintroduction. Examining the first 6 h of a preceded treatment-free relapse episode revealed drinking patterns clustering the rats into responders (reduction of &gt;40%, n = 17) and non-responders (reduction of &lt;40%, n = 7) to subsequent nalmefene treatment. During the first 6 h of the preceding relapse phase, responders consumed more alcohol than non-responders; the amount of alcohol consumed during each drinking approach was larger but frequency of drinking did not differ. Longitudinal drinking behavior and locomotor activity did not significantly predict response.Conclusion: Our results suggest that nalmefene reduces alcohol intake during a relapse-like situation but effectiveness can differ greatly at the individual level. However, who responds may be informed by examining drinking profiles and rats that show high drinking levels prior to treatment are more likely to respond to nalmefene
    • …
    corecore