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Extinction learning suppresses conditioned reward responses and is thus fundamental to adapt to changing environmental
demands and to control excessive reward seeking. The medial prefrontal cortex (mPFC) monitors and controls conditioned
reward responses. Abrupt transitions in mPFC activity anticipate changes in conditioned responses to altered contingencies.
It remains, however, unknown whether such transitions are driven by the extinction of old behavioral strategies or by the ac-
quisition of new competing ones. Using in vivo multiple single-unit recordings of mPFC in male rats, we studied the relation-
ship between single-unit and population dynamics during extinction learning, using alcohol as a positive reinforcer in an
operant conditioning paradigm. To examine the fine temporal relation between neural activity and behavior, we developed a
novel behavioral model that allowed us to identify the number, onset, and duration of extinction-learning episodes in the
behavior of each animal. We found that single-unit responses to conditioned stimuli changed even under stable experimental
conditions and behavior. However, when behavioral responses to task contingencies had to be updated, unit-specific modula-
tions became coordinated across the whole population, pushing the network into a new stable attractor state. Thus, extinction
learning is not associated with suppressed mPFC responses to conditioned stimuli, but is anticipated by single-unit coordina-
tion into population-wide transitions of the internal state of the animal.
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Significance Statement

The ability to suppress conditioned behaviors when no longer beneficial is fundamental for the survival of any organism.
While pharmacological and optogenetic interventions have shown a critical involvement of the mPFC in the sup-
pression of conditioned responses, the neural dynamics underlying such a process are still largely unknown.
Combining novel analysis tools to describe behavior, single-neuron response, and population activity, we found
that widespread changes in neuronal firing temporally coordinate across the whole mPFC population in anticipa-
tion of behavioral extinction. This coordination leads to a global transition in the internal state of the network,
driving extinction of conditioned behavior.
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Introduction
Acquiring reward drives many daily-life decisions and requires
associating specific cues and actions with reinforcement. In an
ever-changing environment, however, the ability to suppress pre-
viously beneficial responses that have become inappropriate or
maladaptive under new circumstances is critical for the survival
of an organism. The rodent prelimbic cortex (PL), together with
the infralimbic cortex (IL), is implicated in extinguishing
reward-seeking behavior (Quirk and Mueller, 2008; Jonkman et
al., 2009; Goldstein and Volkow, 2011; Chen et al., 2013;
Moorman and Aston-Jones, 2015; Riaz et al., 2019; Sharpe et al.,
2019). Both pharmacological inactivation of PL and optogenetic
stimulation of its inhibitory network during the presentation of
conditioned stimuli facilitate extinction (Sparta et al., 2014;
Caballero et al., 2019). Similarly, optogenetic stimulation of PL
projections to the nucleus accumbens reduces reward seeking
when reward is associated with the risk of aversive reinforcement
(Kim et al., 2017).

While such manipulations highlight the role of mPFC in the
extinction of reward-seeking responses, the neural dynamics
driving extinction are largely unknown. At the cellular level, the
acquisition of new behavioral strategies is associated with
changes in PL and IL activity, with changes in PL predicting and
in IL following the acquisition of the new contingencies (Rich
and Shapiro, 2009). Furthermore, sudden neuronal transitions in
prefrontal regions of rodents and primates signal rapid behav-
ioral shifts during rule (rat, PL; Durstewitz et al., 2010) and re-
versal learning (primate, dorsolateral PFC; Bartolo and
Averbeck, 2020), and mark the onset of the exploratory phase
following changes in cued reward probabilities [rat, PL/anterior
cingulate cortex (ACC); Karlsson et al., 2012]. Similar to human
mPFC (Schuck et al., 2015), changes in prelimbic activity in rats
also precede behavioral changes both for spontaneous and
enforced strategy switches (Powell and Redish, 2016).

While representational switches in mPFC have been studied
during the learning of new behavioral rules, it remains an open
question whether similar dynamic processes are also at work
during the extinction of conditioned behaviors. In fact, while
rule switching does require the suppression of old stimulus–
reward associations, such suppression coincides with the forma-
tion of new competing associations. In contrast, during extinc-
tion learning the loss of conditioned responses follows from the
suppression of reward seeking per se. To investigate the neural
dynamics underlying extinction learning, we analyzed in vivo
multiple single-unit recordings from the rat PL area during
maintenance and within-session extinction of a visually guided
appetitive operant conditioning task. To enable a detailed analy-
sis of fine-scale temporal relationships among single-unit activity,
population dynamics, environmental conditions, and aspects of
the behavior of the animal at a single-subject level (Gallistel et al.,
2004), we combined recently developed change-point detection
methods for neural activity (Toutounji and Durstewitz, 2018) with
a newly developed statistical model of behavior. Crucially, the
novel behavioral model provides an estimate of the learning curve
of each animal by identifying sustained changes in its behavioral
response. Each change in behavior is characterized by a distinct
onset trial, duration, and magnitude, with the latter measuring
the relative change in performance during the episode. Our analy-
ses revealed that even when experimental conditions and behav-
ioral responses were stable, single-unit coding in PL was not.
Importantly, however, shortly before the animal started to actively
suppress the previously acquired reward contingency, changes in
single-unit activity became highly coordinated across the whole

network, pushing the PL toward a new operational state that drove
the extinction of reward-seeking behavior.

Materials and Methods
Subjects
Male Wistar rats (Charles River) were group housed when 8weeks old
in standard rat cages under a 12 h reversed light/dark cycle. Food and
tap water were provided ad libitum. After tetrode implantation, rats
shared a cage in groups of two, separated by a high, perforated wall
(50 cm) allowing snout contact. All rats were adults (;14weeks old) and
weighed.400 g at the start of single-unit recordings (see below). All ex-
perimental procedures were performed in accordance with the
European Union guidelines for the care and use of laboratory animals
and were approved by the local committee (G-273/12 and G30/15;
Regierungspräsidium, Karlsruhe, Germany).

Experimental design and statistical analysis
We designed a visually guided appetitive operant conditioning paradigm
to probe the extinction of reward-seeking behavior in rats (Fig. 1A,B).
We chose alcohol as a reward to investigate extinction learning of both
appetitive reward seeking and drug–cue association. Extinction therapy
is, in fact, clinically used to treat substance use disorders, but with vari-
able efficacy (Mellentin et al., 2017). To better understand the mecha-
nisms leading to the extinction of conditioned responses, we developed a
paradigm where the amount of alcohol administered served as a positive
reinforcer, shaping conditioned behavior, but did not lead to intoxica-
tion, which would have interfered with our measurements.

To confirm that the animals perceived alcohol as a positive rein-
forcer, we conducted a pilot experiment and compared the conditioning
effect of alcohol and saccharine. Two cohorts of male Wistar rats per-
formed an operant conditioning paradigm, receiving reward when press-
ing a lever during a cue-light presentation. One cohort received a
solution of saccharine (0.2% v/v in water; n= 10) as a reward, while the
other received a solution of alcohol (10% v/v in water; n=11).
Behavioral training was performed as described below. Stable behavior
over two successive 25-trial sessions was reached when the rats were
;12weeks old. We found no difference in response probability between
the two cohorts (74% and 73% on average for the saccharine and alcohol
cohort, respectively, computed over the two stable sessions; Wilcoxon
rank-sum test, p= 0.69). These initial results confirmed that rats reacted
to alcohol as a positive reinforcer, justifying its use as such in the extinc-
tion paradigm reported here. Such an assumption is further justified by
a previous study that reported the same response probability to saccha-
rine-conditioned and alcohol-conditioned cues during both the mainte-
nance and extinction of an operant conditioning task (Pfarr et al., 2018).
The study also shows that cue-induced recall of saccharine and alcohol
memories recruits comparable and largely overlapping neuronal ensem-
bles in the infralimbic cortex.

Figure 1. Behavioral paradigm and recording sites. A, B, Behavioral task (A) and sche-
matics of trial timeline during reinforced trials (B). During reinforced trials, reward was deliv-
ered exclusively on pressing the cued lever (active lever). C, Histologically verified recording
sites within PL of the 10 rats.
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Behavioral training. All self-administration training sessions were
conducted 2 h after the beginning of the dark phase in operant chambers
(interior: length, 30.5 cm; width, 24.1 cm; height, 21.0 cm; model ENV-
008CT, Med Associates). These training chambers were located inside
sound-attenuating cubicles containing a white noise-generating fan
(model ENV-025F28). Habituation and training consisted of three steps,
lasting 3–4weeks. In step 1, only one lever was presented, and the rats
underwent four to five sessions of behavioral shaping (water deprived
for 20 h before the first two sessions, after which water and food were
provided ad libitum) until they reached a maximum of 50 drops (30ml/
drop) of 10% alcohol (v/v in water) under a fixed ratio 1 schedule for a
maximum of 1 h. In step 2, the rats were trained to self-administer 10%
alcohol in sessions with 60 trials on a fixed intertrial interval (ITI; 15 s)
schedule for 5 d. In these sessions, the lever was presented for a maxi-
mum of 10 s and was retracted immediately following lever press. In
step 3, a cue light above the active lever, an inactive lever on the opposite
side, and a variable intertrial interval (10, 15, and 20 s) were introduced.
The cue light was first presented for a maximum of 15 s, and 5 s after
cue light onset, levers were presented for a maximum of 10 s. Response
on either lever terminated the light and caused levers to retract, but only
a response to the active lever was deemed successful and was followed by
the delivery of alcohol. These training sessions consisted of 60 trials
each. Performers with success rates.50% were selected to continue
training in the intended recording chamber for approximately another
week. The recording chamber (model ENV-007CT; interior: length,
30.5 cm; width, 24.1 cm; height, 29.2 cm) was higher than the training
chamber to make room for an electrical swivel commutator (Dragonfly),
allowing data acquisition in freely moving animals. In this chamber, one
drop contained 40ml of 10% alcohol and was supplied in a cup by a
motor-driven liquid dipper (model ENV-202 M-S), causing a delay of
1.5 s after active lever press. Head entries through the liquid dipper
access opening (5.08� 5.08 cm) were detected by interrupting an infra-
red beam across the entrance (Med Associates), and the behavior was
observed with a USB camera (catalog #95353, Delock). Rats with stable
performance.70% on 2 subsequent days were selected for tetrode
implantation.

Surgical and tetrode placement procedures. Rats were anesthetized
with isoflurane (1.5–2.0%). A custom-built flexDrive (Voigts et al., 2013)
containing eight tetrodes (12.5mmTeflon-coated tungsten wire, California
Fine Wire) was unilaterally implanted with a 10° angle toward midline
into the prelimbic cortex (Brodmann’s area 32: anteroposterior, 12.8 to
13.8 mm; mediolateral, 10.8 to 11.3 mm; dorsoventral, �2.5 to �2.6
mm). A bone screw above the cerebellum served as a ground. The craniot-
omy was stepwise sealed with three-component adhesive (Super-Bond
C&B, MPE Dental UG) and two-component embedding resin (Technovit
5071, Kulzer). From the next day after surgery, tetrodes were advanced
gradually every second day. Behavioral retraining (step 3 in recording
chamber) started 1week after surgery, and the behavioral task started a
few days later when the performance was stable again (.70%). The loca-
tion of the tetrodes within PL was confirmed (Fig. 1C) in fixed, 50-mm-
thick coronal sections by Nissl staining following current passing (100mA,
20 s) to deposit iron particles via a Prussian blue reaction (Ma et al., 2016).

Behavioral task. Each trial (Fig. 1B) started with a visual cue, fol-
lowed by the presentation of two levers 5 s after cue onset, one of which,
the active lever, was directly below the cue light. Only responses to the
active lever were reinforced by a reward, the delivery of a drop of alcohol
(40ml, 10% v/v in water), after a 1.5 s delay. Lever presses on the inactive
lever had no consequences. The trial ended, following lever press or 10 s
after lever presentation with no response, by terminating the cue and
retracting the levers. Pseudorandom intertrial intervals (10, 15, or 20 s)
separated the trials. We adopted a within-subject study design with the
behavioral response to the visual cue and multiple single-unit activity in
PL as the repeated measures and the session (maintenance and extinc-
tion) as the between-group variable. Following habituation, appetitive
conditioning, tetrode implantation (Fig. 1C), and retraining, a cohort of
10 rats underwent daily maintenance sessions of 60 reinforced trials and
were used as the control. The trial number was limited to 60 to ensure
steady motivation throughout the session, as confirmed by the constant
reaction times of the animals (two-tailed paired Wilcoxon signed-rank test

between reaction times of the first and last of 10 trials, p=0.4, n=10). On a
later day, within-session extinction began with 9 reinforced trials followed
by 60 unreinforced trials (Fig. 1A). The switch in reward contingency was
not signaled to the animals, and other experimental conditions were
kept constant throughout the session. The number of inactive lever
presses was low and comparable in both maintenance and within-ses-
sion extinction (maintenance vs within-session extinction, number of
inactive lever presses: 0/1 vs 0.5/1 median/ interquartile range (IQR);
Wilcoxon signed-rank test, p=0.38). Animals were not driven to respond
merely to satisfy thirst or hunger, since neither session was performed
under water or food restrictions.

Recordings. Multiple single units were simultaneously recorded using
a 32-channel RHD2132 amplifier connected to an RHD2000 USB inter-
face board (Intan Technologies). All channels were digitized with 16 bit
resolution, sampled at 30 kHz, and bandpass filtered between 0.1 and
8000Hz. The time stamps for external stimuli (cue light, lever presenta-
tion), lever presses, dipper activation, and head entries into the access
opening of the liquid dipper were transmitted from the Med Associates
behavioral control system (Med-PC IV software, version 4.39, Med
Associates) to the Intan Technologies recording system to align behavior
to neural activity.

Spike detection and sorting. After bandpass filtering between 300 and
5000Hz (fourth-order Butterworth filter, built-in MATLAB function),
the median voltage trace of all channels was subtracted from each trace
to reduce noise. The day with the highest number of single units, of 3
consecutive days with.75% mean success rate during retraining, was
chosen for further analysis (maintenance). The threshold for spike detec-
tion was set to 5.5 times the median absolute deviation from baseline.
Detected spikes were sorted with a custom-built graphical user interface
in MATLAB (provided by W. Kelsch, Central Institute of Mental
Health, Mannheim, Germany) into individual cell clusters based on peak
amplitude and the first three principal components of the waveform.
Spike-sorting quality and unit isolation were assessed with MLIB [a
MATLAB (MathWorks) toolbox for analyzing spike data by Maik
Stüttgen; https://www.mathworks.com/matlabcentral/fileexchange/37339-
mlib-toolbox-for-analyzing-spike-data]. After spike sorting, ,1% of con-
secutive spikes in accepted clusters had an interspike interval of ,2ms.
Cross-correlation analyses supported that each single unit was isolated
from other units. Since we were interested in studying how changes in sin-
gle-unit and population firing rates (FRs) coordinated with behavior, it
was of utmost importance to ensure the stability of the recording. Even
small movements in the tetrode position may result in upward or down-
ward drift in spike amplitudes relative to the spike-detection threshold,
leading to an apparent change in firing rates. To make sure that our meas-
urements of spike amplitude remained unchanged from the beginning to
the end of each recording session, we compared the average amplitude of
the first and last 100 spikes for each unit. We found no substantial change
in the spike amplitude, corroborating the stability of the recordings (Fig.
2A). To further confirm that a few small-amplitude variations did not
impair spike detection (therefore contaminating the detected rate), we
compared spike amplitude values both at the beginning and at the end of
each session with the detection threshold of the corresponding tetrode.
For each unit, the detection threshold was well below the spike amplitudes
(Fig. 2B).

Statistical analysis
All data were analyzed using built-in and custom-made MATLAB rou-
tines (MathWorks), as was model fitting. To correct for multiple com-
parisons, significance levels were adjusted using the procedure of
Benjamini and Hochberg (1995). ANOVAs were performed using the
SPSS software (IBM).

z scores. We obtained the single-unit instantaneous firing rate as fol-
lows: spike trains were first convolved with a Gaussian kernel (SD =
60 ms), and the resulting time series were time averaged within 100 ms
bins. Binning was aligned to the cue onset of each trial. The z-scored
response over the considered block of trials was then computed for each
unit by first trial averaging (mean firing rate across a block of trials), fol-
lowed by subtracting the mean and dividing by the SD of the baseline
trial-averaged firing rate (2 s before either cue light or lever
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presentation). Significant units were identified as those whose absolute
average z-scored response over three bins following the stimulus (cue
light or lever presentation) is .1.96 (i.e., a value outside the 95% confi-
dence interval of the standardized normal distribution). The area under
the curve (AUC) of the z-scored response was similarly computed as the
absolute average over three bins.

Modeling behavior. We describe the behavior of each animal by a
sequence of learning episodes, each of which is defined by its onset trial, du-
ration, and relative change in performance. Formally, the behavior of each
animal is treated as a binary vector y ¼ y1; :::; yT , with T the number of tri-
als in a session (yt ¼ 1 for active lever press and yt ¼ 0 for omission or
inactive lever press). We thus use an inhomogeneous Bernoulli process
x ¼ x1; :::; xT to model response probability, as follows:

Pr yt ¼ 1jxt
� � ¼ xytt 1� xtð Þ1�yt :

The time-varying response probability xt 2 0;1½ � characterizing the
learning curve of the animal is, in turn, modeled as a weighted sum of B
logistic sigmoids, as follows:

xt;B ¼ b 1
XB

b¼1

wb

11 e
�
t � cb
t b

;

where b is baseline response probability. Each sigmoid corresponds to a
learning episode that is parametrized by a weight (or magnitude), wb,
measuring the relative change in performance during the episode, a cen-
ter trial, cb, and a time constant, t b, that scales with episode duration.
Centers cb correspond to B behavioral change points (behavioral CP50%).
To highlight the neuronal mechanisms initiating behavioral extinction,
we chose a drop of 10% in response probability to mark the onset (be-
havioral CP10%) of an extinction-learning episode (defined as episodes
where wb,0). These drops were defined for each extinction-learning
episode b as the first trial t where 1=ð11expð� t � cbð Þ=t bÞÞ � 0:1.

To estimate the learning curve, model parameters are initialized
using the Paired Adaptive Regressors for Cumulative Sum (PARCS)
method for any given B (Toutounji and Durstewitz, 2018), then inferred
by constrained maximization of data log-likelihood, as follows:

LðxBjyÞ ¼
XT

t¼1

ytlog xt;Bð Þ1 1� ytð Þlog 1� xt;Bð Þ:

Baseline and weight constraints are imposed to assure that response
probability is bounded between 0 and 1. Other parameter constraints
(1 � cb � T and t b.0Þ enforce model identifiability. Model selection
relies on an iterative procedure where, starting from B ¼ 0 (correspond-
ing to no learning), a null model of order B is compared against the
order B11 alternative, using the following likelihood-ratio test:

l B1 1 : Bð Þ :¼ 2 L xB11jy
� �� L xBjy

� �� �
;x 2

3;

where the significance level is set to a ¼ 0:05. The number of
degrees of freedom corresponds to the difference in the number of pa-
rameters between the two models.

Change-point analysis. To relate neural and behavioral dynamics
during each session, we identified sudden jumps (i.e., CPs) in neuronal
firing rates within certain windows of interest both across the entire pop-
ulation and single units (population CP/single-unit CP). Detection of
multiple change points in neuronal recordings was performed using the
PARCS method (Toutounji and Durstewitz, 2018). An important
advantage of using PARCS for multiple change-point detections com-
pared with other methods (Olshen et al., 2004; Cho and Fryzlewicz,
2015) is that it avoids segmenting the data which, for short time series,
as is the case here (60–69 data points), may quickly deplete statistical
power. The method relies on the observation that a time series contain-
ing change points can be approximated by a piecewise constant function,
while its integral [i.e., the cumulative sum transformation of the time se-
ries (CUSUM)] by a piecewise linear function that bends at the CPs. For
neural CPs, the method is applied to the square root-transformed spike
counts in each window of interest, bringing counts closer to a Gaussian
distribution and stabilizing the variance (Kihlberg et al., 1972). PARCS
infers the piecewise linear approximation of the CUSUM transformation
and its bending points corresponding to the CPs using adaptive regres-
sion splines (Friedman and Silverman, 1989). The significance of a CP is
then decided using a test statistic that quantifies the amount of bending
at the CP and a permutation bootstrap procedure (Toutounji and
Durstewitz, 2018). Crucially, when considering population CPs, PARCS
operates on the multivariate CUSUM transformation of the time series,
assuring that population CPs are not averaged out: the test statistic takes
into account the amount of bending at a candidate population CP for
each individual neuron, regardless of whether the spike counts of each
neuron increase or decrease following the CP. An upper bound of three
on the number N of CPs per unit or population is chosen and the nomi-
nal significance level for the permutation bootstrap procedure of the
method is set to a ¼ 0:2 to correct for the conservativeness method’s
(Toutounji and Durstewitz, 2018).

Relating behavioral model to population CPs. To quantify locking
between population CPs and behavior, we developed a measure for com-
paring the likelihoods that two sets of population CPs are sampled from
one behavioral response probability distribution pbðyt ¼ 1Þ. This distri-
bution is the sum of B bell-shaped curves (each peaking at one behav-
ioral CP50% cb and of width that scales with t b), computed by
normalizing the first differences Pr yt11 ¼ 1jxt11;b

� �� Pr yt ¼ 1jxt;b
� �j��

to sum up to 1. Similarly, a neural response probability distribution
ppðDFRt 6¼ 0Þ is computed as the sum of N Dirac d functions, centered
at the N population CPs cn. Weights are computed by averaging and
normalizing |DFRcn j over the whole population, such that ppðDFRt 6¼ 0Þ
sums up to 1. Given two neural response distributions, ppi and ppj , we
compute the likelihood ratio, as follows:

Figure 2. Recording stability. A, Absolute value of the average spike amplitude of the first and last 100 spikes of the session for each unit recorded in the maintenance and extinction ses-
sions. The agglomeration of points along the diagonal rules out drifts in the amplitude of the recorded spikes during the session. B, Histogram of the ratio between spike amplitude and the
spike detection threshold, showing that spike amplitudes are at least two times higher than the detection threshold both at the beginning and at the end of the recording session. Ratios were
computed over the average of both the first and last 100 spikes of the session.

Russo et al. · Prefrontal Transitions Lead Extinction Learning J. Neurosci., March 17, 2021 • 41(11):2406–2419 • 2409



l ppi : p
p
j

� �
:¼ 2log

PNi

n¼1
ppi DFRcn 6¼ 0ð Þpb ycn ¼ 1ð Þ

PNj

n¼1
ppj DFRcn 6¼ 0ð Þpb ycn ¼ 1ð Þ

:

Positive l ppi : p
p
j

� �
indicates a stronger locking to the same behavior

of the set i of population CPs, relative to the set j. We compute 9
l ppi : p

p
j

� �
for each of the 10 animals, where pb and ppi correspond to

the response probability and neural response distributions of the extinc-
tion session for the animal, respectively, and ppj to the neural response
distribution of each of the other nine animals (i 6¼ jÞ.

Characteristics for comparing different CP sets. We compare different
sets of single-unit CPs using the following statistics: frequency, # s:u:CP=units;
relative rate change, r :¼ 2 FRpre s:u:CP � FRpost s:u:CPj=ðFRpre s:u:CP1

��
FRpost s:u:CPÞ; and sign ratio, # positive s:u:CPs=# negative s:u:CPs. The
firing rates FRpre s:u:CP and FRpost s:u:CP were computed over the peri-
ods of constant firing rates around the single-unit CP, defined by
PARCS as the longest periods before and after a CP where no other
change point was detected.

Sensitivity analysis. We computed for each unit the following
statistic:

d9 ¼ r2 � r1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiðs 2
1 1s 2

2Þ=2
p ;

where ri and s 2
i are the firing rate mean and variance over a block of tri-

als, respectively (first vs last 12 maintenance and extinction trials).
Positive d9 indicates an increase of firing rate in block 2 compared with
block 1 measured in units of average SD, and vice versa.

Comparing single-unit CP distributions across sessions. We compare
the empirical distributions function (EDF) of single-unit CP occurrence
during maintenance and within-session extinction within the five task win-
dows considered using P-P (probability-probability) plots. Given the differ-
ent number of trials in the two sessions (60 and 69 trials, respectively), we
first linearly time warped extinction trials to fit within 60 bins, which we
then used to compute the EDF of single-unit CPs of that session.

Single-unit and behavioral CP coordination. We collected all single-
unit CPs and aligned them with respect to each behavioral CP10% of the
corresponding animal (i.e., for animals with B extinction-learning epi-
sodes, single-unit CPs were considered B times). The aligned single-unit
CPs were then binned using a three-trial bin. For statistical testing, we
used permutation bootstraps to test whether single-unit CP frequencies
within 10 trials from the behavioral CPs were statistically larger than
what is expected by chance. We generated bootstrap histogram samples
by randomly shuffling the occurrence of the single-unit CPs of each ani-
mal and repeating the alignment procedure described above. This was
done by permuting the trial order but keeping co-occurring single-unit
CPs of different units at the same trial. Behavioral CPs were left
unchanged. The 5000 histogram samples so obtained were then used to
produce an EDF over single-unit CP frequency per histogram bin. At
each of the seven frequency values around the behavioral CP of the origi-
nal single-unit CP histogram, a p value was assigned on the basis of the
EDF of their corresponding bin. To test significance with a higher tem-
poral resolution than a three-trial binning, we repeated the bootstrap
procedure by sliding the histogram bin edges by one and then two trials.
As control, we repeated the test using behavioral CPs from the extinction
session but single-unit CPs frommaintenance.

Predicting behavioral CPs from PL population vectors. We tested
whether the firing rate of the PL population in different task windows of
interest could predict changes in animal behavior. For each animal, we
considered the population vector VW

t ¼ ½FR1
t ; :::; FR

M
t � constructed from

firing rates FRi
t of units i in trial t in the task windowW. On the basis of

these population vectors, we then trained a support vector machine clas-
sifier with linear kernel (slack variables minimized with L1 norm and
box constraint = 1) to divide the trials occurring before the first behav-
ioral CP from those occurring after the behavioral CP. For this analysis,
if behavior contained multiple extinction-learning episodes, only the first
was considered, to have a comparable chance level across animals.

Classifier accuracy was computed with a 10-fold cross-validation to
avoid overfitting. Since the sample was imbalanced and the two classes
(before/after behavioral CP) were not of equal size, we used the Cohen’s
k coefficient to quantify classifier accuracy relative to chance level.
Cohen’s k ranges between�1 and 1 and is defined as follows:

k ¼ p0 � pe
1� pe

;

with p0 the fraction of correctly classified samples and pe the expected
probability of correct classification due to chance. Kappa values were
computed on the classifier output collected over the 10 folds for each
animal and each task window. For statistical testing, the significance of
the k coefficients was tested through bootstrap. Any monotonic change
in firing rate can improve the performance of a classifier trained to
divide temporally ordered samples. To account for this factor and test
exclusively for the behavioral CP and population rate coordination, we
created a bootstrapped sample by repeatedly assigning the behavioral CP
to a random trial. We then trained the classifier to divide trials occurring
before the shuffled behavioral CP from those occurring after it. The
procedure was repeated 100 times for each animal and each task win-
dow. The obtained kboot values were then averaged per animal and task
window, generating a reference set kW

boot ¼ ½k boot
1 ; kboot

i :::; k boot
10 � with

i ¼ 1 :: :10 indexing the animal. Since the performance of a classifier
highly depends on the number of units composing the population vec-
tor, we compared the set of original k values with kW

boot with a one-tailed
paired t test. Significance was assessed with Benjamini–Hochberg cor-
rection for multiple comparisons.

Coordination between single-unit CPs across windows. To quantify
coordination between single-unit CPs detected within one window and
those of the same unit detected within another, we proceeded as follows:
for each single-unit CP detected in the first window, we computed the
distance in trials between its occurrence and that of the nearest single-
unit CP of the same unit detected in a different task window. Absolute
distance values were then averaged across all units of an animal.

Results
We recorded single-unit activity within the PL region of the
mPFC (Fig. 1C) while 10 adult male Wistar rats (;14weeks old)
performed a visually guided operant conditioning task during
maintenance and its subsequent within-session extinction (Fig.
1A,B). Alcohol in low concentration was used as a positive rein-
forcer (see Materials and Methods). Response probability (rate of
active lever presses) during maintenance was high, indicating
that rats had learned to associate the visual cues with reward
(Fig. 3A). This high response probability dropped during within-
session extinction, indicating that behavior was extinguished
when the visual cues were not reinforced any more (60 mainte-
nance vs last 18 within-session extinction trials, percentage of
active lever presses: 87.76 2.5% vs 12.86 3.1%, mean 6 SEM;
right-tailed Wilcoxon signed-rank test, p=9.8 � 10�4; Fig. 3A).
To inspect the timing of behavioral changes during within-s
ession extinction, responses were binned in blocks of six consec-
utive trials. We observed a gradual reduction in response proba-
bility across the whole cohort starting at trials 16–21, and an
intermittent, albeit not significant, increase at trials 40–45
(Wilcoxon signed-rank tests between consecutive blocks with
Benjamini–Hochberg adjusted p, 0.05 and p, 0.08, respec-
tively; Fig. 3B).

PL activity remains modulated by conditioned cues during
extinction learning
Next, we investigated the PL response properties following cue
and lever presentation by inspecting the z scores of 132 and 162
units recorded during maintenance and extinction, respectively
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(see Materials and Methods). Figure 3C compares the average z-
scored activity of significantly responding units during maintenance
and significantly responding units during the unreinforced trials of
within-session extinction. Excitatory as well as inhibitory rate mod-
ulations following cue light and lever presentation were comparable
(uncorrected Wilcoxon rank-sum test; cue light maintenance vs
extinction excitatory/inhibitory, p=0.56/0.31; same for lever presen-
tation, p=0.50/0.48). To test whether the response of PL units to
task stimuli is predictive of the behavioral response probability (Fig.
3A,B), we also compared the activity of all recorded units during
trial blocks of stable behavior in both maintenance and within-ses-
sion extinction (first/last 12 trials during maintenance and extinc-
tion; 9 reinforced trials during within-session extinction; Fig. 3D).
We found no significant difference in the overall z score distribu-
tions of PL unit responses, neither when comparing different

steady-state blocks within the same session nor when comparing
corresponding blocks between the two sessions (uncorrected
Wilcoxon rank-sum test; cue light maintenance vs extinction early/
late, p=0.17/0.73; early vs late maintenance/extinction, p=0.32/
0.47; reinforced vs extinction early/late, p=0.13/0.49; same for lever
presentation, p=0.68/0.53, p=0.45/0.80, p=0.64/0.50). These
results demonstrate that, as behavior changes toward extinguishing
the cue–reward association, PL remained responsive to task-related
cues to a similar degree as during maintenance. Moreover, during
within-session extinction, the overall response to cues remained
consistent across different blocks of steady-state behaviors, whether
the animal responded to the task or not. These findings are in line
with previous observations showing that the overall proportion of
different mPFC units responding to different task aspects remains
about the same despite changes in task rules and contingencies (Ma
et al., 2016).

Whole-trial PL population activity reflects behavioral
changes during extinction learning
Despite demonstrating a consistent decrease in behavioral
response probability across animals, the above analyses do not
capture trial-by-trial changes and idiosyncrasies in the behavior
of each animal (Gallistel et al., 2004), which may conceal relevant
aspects of the relationship between PL activity and extinction
learning. To address this, we developed a new statistical model of
binary choice behavior that captures the response–probability
dynamics of an animal (i.e., learning curve) by a weighted sum of
sigmoids (see Materials and Methods). Each sigmoid corre-
sponds to a separate learning episode, that is characterized by the
following three parameters: the trial at which the sigmoid is at
half height (behavioral CP50%), a slope that defines the duration
of the episode, and a weight specifying the amount and direction
of change in behavior during the episode. Statistical model selec-
tion allowed us to specify the smallest number of episodes
required to explain �95% of the behavioral variance of an ani-
mal. This approach revealed that the tested cohort adopted a va-
riety of behavioral profiles that differed in the degree of
abruptness of behavioral changes and in the eventual occurrence
of transient reinstatements of the conditioned behavior. We
found one or two extinction-learning episodes (sigmoidal curves
with negative weights) in six and three animals, respectively, and
two extinction-learning episodes separated by a reinstatement
episode (positive weight) in one animal (Fig. 4A). We then com-
puted the spike counts during whole trials and identified popula-
tion-wide CPs from the PL units recorded from each animal
using PARCS (Toutounji and Durstewitz, 2018; see Materials
and Methods). PARCS identifies trials with significant
changes in firing rate across the entire population, cumulating
over rate changes in individual units regardless of the sign of
these changes. It is important to note that this approach cap-
tures longer-lasting changes in coding (i.e., significant jumps in
firing probability between periods of relative stability, and not
stochastic trial-to-trial variability). Despite the varying number
of units recorded per rat, two population CPs were detected in
all animals. Visual inspection suggested that changes in response
probabilities, as captured by the behavioral model, are often
accompanied by population CPs. To quantify this relation-
ship, we developed a statistical bootstrap procedure, based on
computing a likelihood-ratio statistic, l (see Materials and
Methods). This statistic compares how strongly the change in
response probability of an animal locks to its own population
CPs versus an alternative set of population CPs detected in
another animal. Considering all possible combinations of model-

Figure 3. PL activity remains modulated by conditioned cues during extinction learning.
A, B, Percentage of active lever presses during maintenance and the last 18 trials of extinc-
tion (A) and throughout within-session extinction (B). Dashed lines show percentages for
individual animals. Solid line and error bars show the mean6 SEM. Asterisk and hash sym-
bols mark Benjamini–Hochberg-corrected p, 0.05 and p, 0.08, respectively. C, The z-
scored activity of significantly responding units (number of units shown for each curve) fol-
lowing cue light and lever presentation (see Materials and Methods). Horizontal dotted lines
mark the significance threshold and testing window. Solid lines and shading show the
mean 6 SEM. D, AUC for z-scored single-unit response (see Materials and Methods) of all
units computed on trial blocks of steady-state behavior (early/late: first/last 12 trials during
maintenance and extinction; reinforced: 9 reinforced trials during within-session extinction).
Boxplot whiskers extend to include points within 1.5 of the IQR. Horizontal dotted lines mark
the significance threshold.
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estimated learning curves and population CPs, we found a sub-
stantial bias toward positive l values during extinction (l ext;
right-tailed Wilcoxon signed-rank test, p=2.0 � 10�10; Fig. 4B,
right), indicating a strong match between the behavioral model
and the population CPs of the same animal. As a control, we also
computed another set of l values (lmaint) using maintenance
population CPs and related them to the same set of learning
curves estimated during within-session extinction. Contrasting
the l ext distribution with the null lmaint distribution (Fig. 4B)
further confirmed that behavior is significantly more locked to
population CPs than expected by chance (l ext . lmaint; right-
tailed Wilcoxon signed-rank test, p=2.0 � 10�8). Furthermore,
l ext values corresponding to an individual animal significantly
correlated with the number of units recorded from that animal

(Spearman’s rank correlation coefficient, p= 1.4 � 10�5, r= 0.44;
Fig. 4C), indicating that the few cases with a poor match between
population CP and behavior may be because of undersampling
PL units, rather than to differences in the neural mechanisms
underlying extinction learning across animals (Fig. 4B,C, ma-
genta and cyan points). These analyses show that the temporal
evolution of behavior during extinction learning was strongly
reflected in the population dynamics of PL neurons.

PL single-unit dynamics during extinction learning is
indistinguishable from that during maintenance
While population CPs result from the activity of the whole set of
recorded units and may reflect the overall dynamics of the PL
network, one might expect a certain degree of heterogeneity in
single-unit encoding. Indeed, not all change points estimated
from single-unit whole-trial spike counts (single-unit CPs) coin-
cided with population CPs. This is because of the fact that signifi-
cant, yet relatively weak, changes in the firing rate of one unit
may not be shared with other units to be deemed significant at
the population level. To pinpoint more exactly during which task
phases extinction-related changes happened and how different
units were involved in them, we identified an additional set of
four single-unit CPs estimated from the spike counts of four
within-trial windows of interest (Fig. 5B). The cue-light and
lever-presentation windows, defined as the 0.5 s after stimulus
onset, allowed monitoring PL network responses to task-related
external stimuli. The delay period window, which spans the 2 s
preceding lever presentation, was selected to assess potential
effects of reward expectation. Finally, the ITI window, between
�3 and �1 s before cue-light onset, allowed consideration of
PL dynamics independently of specific task-related activity.
Importantly, none of these windows included trial periods where
motor responses were expected, which allowed a fair comparison
between maintenance and extinction.

Irrespective of the window examined, single-unit CPs during
extinction learning were distributed across the entire session
(Fig. 5C). On average over all recorded units, single-unit CPs
occurred in all windows with similar frequency, same relative
change in firing rate r , and with balanced positive to negative
sign ratio (see Materials and Methods for formal definitions of
these three statistics; frequency: one-way ANOVA on task win-
dows, main effect: F(3,36) = 2.0, p=0.1; Fig. 5D, right; r : one-way
ANOVA on task windows, main effect: F(3,36) = 1.7 p= 0.2; Fig.
5E, right; sign ratio: t test on the fraction of positive over negative
jumps against 1, uncorrected p. 0.05 for all windows; Fig. 5F,
right). Besides, the average PL firing rate remained constant
throughout the whole session for all task windows (see Materials
and Methods; one-way ANOVA for repeated measures to test
the effect of the trial block on the population firing rate: ITI:
F(10,90) = 0.6 p=0.8; light: F(10,90) = 0.7 p= 0.7; delay: F(10,90) = 0.9
p= 0.5; lever: F(10,90) = 1.9 p= 0.1; Fig. 5G). Although overall
changes in firing rate across units were balanced, the specific
changes in single-unit firing rates resulted in a reorganization
of the PL coding throughout the session: while the unit
responses within the cue-light and lever-presentation phases
remained unchanged on average (across the population) from
the beginning to the end of the extinction session (Fig. 3D), the
identity of task-responsive units varied. Approximately 21.6%
of the recorded units changed the trial-averaged firing rate by
.2 SDs between the first and last 12 extinction trials of the ses-
sion (sensitivity index d9; see Materials and Methods; Fig. 5H,
middle, example animal). Only 30% of the units with a signifi-
cant response in the first reinforced trials of within-session

Figure 4. Whole-trial PL population activity reflects behavioral changes during extinction
learning. A, Examples of the behavioral models (orange) of four representative animals and
their respective population CPs computed over the whole-trial firing rate of the population
during within-session extinction (light blue). Filled black circles indicate the trial-specific be-
havioral choice. Dashed line indicates the onset of extinction trials. Numbers at the top right
of each panel indicate the number of recorded units. B, Distribution of likelihood ratio test
statistic for relating the set of behavioral response models during within-session extinction to
maintenance population CPs (l maint; left) and extinction population CPs (l ext ; right). Points
in magenta and cyan correspond to l ext values from two animals, which were consistently
close to or ,0, indicating a poor match between population CP and the behavior of the
two. Boxplot whiskers extend to include points within 1.5 of the IQR. C, Number of units
recorded from each rat against its corresponding likelihood ratio test statistic values l ext .
Points in magenta and cyan pertain to l ext values from the corresponding rats in B.
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extinction (40% and 20%, following cue light and lever presen-
tation, respectively) were also responsive at the end of the ses-
sion. Surprisingly, this degree of change in task-responsive
units was also present during maintenance, where both experi-
mental conditions and animal behavior were constant through-
out the session (Fig. 5D–F,H, left). We found no significant
difference between maintenance and extinction single-unit CPs
for all windows (ITI/light/delay/lever) with regard to the distri-
bution of CP frequency, r , sign ratio, and the distribution of
CP occurrence across the trials of each session (frequency:
repeated-measures two-way ANOVA; factors: session/window;
main effects: session, F(1,9) = 1.4, p= 0.3; window, F(3,27) = 5.9,
p= 0.003; interaction, F(3,27) = 0.5, p= 0.7; Fig. 5D; r : repeated-
measures two-way ANOVA factors: session/window; main
effects: session, F(1,9) = 0.5, p= 0.5; window, F(3,27) = 1.6, p= 0.2;
interaction, F(3,27) = 0.4, p= 0.7; Fig. 5E; sign ratio: two-way

factors: session/window; main effects: session, F(1,8) = 0.13,
p= 0.7; window, F(3,24) = 1.6, p= 0.2; interaction, F(3,24) = 1.5,
p= 0.2; Fig. 5F; post hoc Bonferroni correction applied in all
ANOVAs; no significance found post hoc; single-unit CP trial
distribution: see Materials and Methods; two-sample
Kolmogorov–Smirnov test for single-unit CPs in ITI, p= 0.4;
light, p= 0.4; delay, p= 0.1; lever, p= 0.4; Fig. 5, compare I, C).
Moreover, similar to within-session extinction, a large frac-
tion of units changed their trial-averaged firing rate from the
start to the end of the maintenance session (30.3%; Fig. 5H,
left). The distributions of the sensitivity index d9 for units
recorded in the maintenance versus extinction sessions were,
in fact, not significantly different (two-sample Kolmogorov–
Smirnov test, p = 0.5; Fig. 5H, right).

In summary, PL units changed their responsiveness to the
task stimuli with balanced positive and negative single-unit CPs

Figure 5. PL single-unit dynamics during extinction learning is indistinguishable from that during maintenance. A, Four examples (same animal) of single-unit whole-trial firing rates (black
dots) during within-session extinction, with single-unit CPs (light blue filled circles) and the firing rate as inferred by the CP detection algorithm (light blue solid line). Behavioral model shown
in orange as in Figure 4A. B, Five task windows of interest within which five sets of population and single-unit CPs were identified from population and single-unit firing rates. Windows are
defined relative to light onset as follows: ITI, seconds -3 to -1; cue light, seconds 0 to 0.5; delay period, seconds 3 to 5; lever presentation, seconds 5 to 5.5; and whole trial, seconds 0 to 15. C,
Distribution of single-unit CPs across maintenance and extinction trials (60 and 69 trials, respectively) for each task window, pooled from all animals. D–F, Number of single-unit CPs per unit
(D), relative change in firing rate (E), and positive-to-negative sign ratio (F) computed in four task windows. Plots show the mean6 1.96 SEM (red and gray) and SD (blue or orange). Open
circles indicate the mean for individual animals. The three quantities (D–F) are statistically indistinguishable when compared between sessions. Gray line in F marks a sign ratio of 1, where
positive and negative rate changes are balanced. G, Population firing rate per task window over blocks of six consecutive trials during within-session extinction (trials 1–3 excluded; Fig. 3B).
Dashed line indicates the onset of extinction trials. Solid lines and error bars show the mean6 SEM. H, Sensitivity analysis showing increased and decreased single-unit whole-trial firing rates
of a representative animal during the first and last 12 trials of maintenance (left) and extinction (middle). Empirical distribution functions (right) of the sensitivity index d9 for all recorded single
units from all animals in maintenance (blue) and extinction (orange) show no significant difference, despite difference in behavior. Dotted lines mark the threshold of significant change in firing
rate. I, P-P plot comparing the empirical distribution function of single-unit CPs over maintenance and within-session extinction trials (compare C) for the four task windows.
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during both maintenance and extinction. This reorganization
occurred to the same extent in both sessions and therefore was
not induced by changes in experimental conditions.

PL baseline rate and task-evoked responses change in
anticipation of behavioral extinction
The above analysis revealed that, during prolonged stretches of
time (every session lasted ;30min), PL single units changed
their responsiveness to stimuli. Such variation in firing patterns
also occurred during maintenance and the number of single-unit
CPs was comparable in the two sessions. Therefore, we won-
dered whether the observed match between population CPs and
change in behavioral response probability during extinction was
because of a coordination of single-unit CP occurrences, locked

to extinction-learning episodes rather than to an overall increase
or decrease in firing rates. Visual inspection of the timing of
single-unit CPs relative to population CPs of each animal com-
puted over the whole-trial windows during both sessions lent
initial support to this hypothesis (Fig. 6A, exemplary animals).
Furthermore, we found that, despite the similarity in single-
unit CP-related statistics between the two sessions, the number
of population CPs per rat at the population level was signifi-
cantly higher during extinction, regardless of the task window
considered (two-way ANOVA; main effect of session: F(1,72) =
67.8, p= 5.7 � 10�12; main effect of task window: F(3,72) = 7.0,
p= 0.6; interaction: F(3,72) = 0.7 p= 0.6; Fig. 6B). Since popula-
tion CPs are more likely to emerge when more units undergo
relatively simultaneous firing-rate changes, this result further

Figure 6. PL baseline rate and task-evoked responses change in anticipation of behavioral extinction. A, The z-scored whole-trial response of all recorded units from one representative ani-
mal during maintenance (left) and within-session extinction (right), overlayed with population CPs (blue dashed lines) and single-unit CPs (blue triangles). Triangle directions indicate whether
the CP results from an increase or decrease in the firing rate of the corresponding unit. The z scores are shown with the same scale in both sessions. Dashed white line indicates the onset of
extinction trials. B, Number of population CPs per animal. Plots show the mean6 1.96 SEM (red and gray) and SD (blue or orange). Open circles indicate the numbers for individual animals.
C, Onset (yellow) and center (red) of an extinction-learning episode for one representative animal. Behavioral CP10% and behavioral CP50% correspond to 10% and 50% drops in response
probability, respectively. D, E, Single-unit CP distributions for different task windows (whole trial, cue light, delay period, and lever presentation) pooled across animals and aligned with respect
to behavioral CP10% (D) and CP50% (E) from the within-session extinction of each animal. Single-unit CPs of the extinction session coordinated at extinction onset in all windows (top), while
those of the maintenance session showed no significant coordination when aligned to the extinction onset of the extinction session (bottom). Statistical tests performed via bootstrap (see
Materials and Methods). The p values assigned to each trial lag (center of the bin) are reported on logarithmic scale for visibility. The Benjamini–Hochberg correction for multiple comparisons
was performed only on the p values of the seven bins of the displayed histogram. Asterisks mark p, 0.05 (black) and p, 0.1 (gray) after correction. Horizontal dotted lines mark the log
(0.05) threshold over the tested window. F, G, same as D and E, respectively, on single-unit CPs computed on the ITI window.
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suggests a lack of coordination in single-unit CPs during
maintenance.

To test this hypothesis further, we considered for each animal
the lag between its single-unit CPs and the onset of an extinc-
tion-learning episode. Extinction onset was defined as the trial
corresponding to a decrease by 10% (behavioral CP10%) in
response probability during an extinction learning episode (see
Materials and Methods; Fig. 6C). We found that single-unit CPs
computed over the whole trial locked with zero lag to behavioral
CPs10% (see Materials and Methods; Fig. 6D). A similar match
was also found for single-unit CPs occurring during the cue-
light, delay-period, and lever-presentation windows (Fig. 6D). To
further confirm the temporal coordination between single-unit
CPs and the learned behavior, we performed, as a control, the
same analysis but matching behavioral CP10% values during
extinction to the single-unit CPs of maintenance instead. In
addition to an increase in single-unit CP occurrence probability
at the center of the maintenance session, which explains the
nonuniform distribution of maintenance single-unit CPs
around behavioral CP10% values, no fine-tuned coordination
was found (Benjamini–Hochberg-corrected bootstrap test; see
Materials and Methods; Fig. 6D). Behavioral extinction thus
coincided with a coordinated change in PL single-unit firing
rates. Such coordination preceded the change in behavior. In
fact, while the behavioral CP10% values indicate a decrease in
response probability from a baseline of 10%, 7 of 10 animals
still responded to all lever presentations until, and including,
the first behavioral CP10% mark. As a further confirmation, we
found in all four task windows considered that the single-unit
CP probability significantly increased a few trials before behav-
ioral CP50% values (Fig. 6E).

Interestingly, also during the ITI, when the animal was not
actively engaged in the task, PL firing rate changed in anticipation
of behavioral extinction (Fig. 6F,G). To further confirm whether
behavioral changes could be predicted from the activity of PL neu-
rons even before the beginning of a trial, we trained a classifier on
PL population spike counts during the ITI window preceding trial
t to predict whether the animal will still be committed (t, behav-
ioral CP) or not (t . behavioral CP) to the task on that trial. We
measured the classifier performance using Cohen’s k (where
k ¼ 1 corresponds to a perfect prediction, k ¼ 0 to chance and
k ¼ �1 to complete mismatch; see Materials and Methods). We
found that, based on population vectors constructed from the ITI,
k ¼ 0.456 0.08 when considering behavioral CP50% values and
k ¼ 0.496 0.07 when considering behavioral CP10% values. To
confirm that the observed effect was because of behavioral extinc-
tion and not, more generally, to random monotonic changes in
firing rate across the session, we constructed a bootstrap replica
where unaltered PL population vectors were used to predict the
occurrence of randomly generated behavioral CPs (see Materials
andMethods). PL activity during the ITI could predict the original
behavioral CPs significantly better than the bootstrapped replicas
(one-tailed paired t test, p=5.2 � 10�4; Fig. 7A). A similar result
was obtained when considering population spike counts during
the delay-period and lever-presentation windows (one-tailed
paired t test, Benjamini–Hochberg adjusted over the four task
windows, p, 0.012 for all task windows except cue light; Fig. 7A,
B). PL population activity during the cue-light window was at
chance level in predicting behavioral CP10% (Fig. 7A), but above
chance when predicting behavioral CP50% values (one-tailed
paired t test, Benjamini–Hochberg adjusted over the four task
windows, p, 0.01 for all task windows; Fig. 7B). This was in line

Figure 7. Reorganization in PL activity is predictive of behavioral extinction in all task windows. A, B, Classifier performance in predicting the behavioral state of the animal defined with
respect to behavioral CP10% (A) and CP50% (B) values from population firing rates during four task windows (Fig. 5B). Significance was assessed via bootstrap (see Materials and Methods).
Differences between data and bootstrapped Cohen’s k are reported by showing the mean6 1.96 SEM (red and gray) and SD (purple). Open circles indicate differences for individual animals.
Population rates are predictive of extinction onset in the ITI, delay-period, and lever-presentation windows. C, To the left, raster plots of two representative units from the same animal, show-
ing rate progression across extinction (bottom to top). Filled and open blue circles mark trials with reinforced and unreinforced lever presses, respectively. Vertical gray lines indicate cue-light
onset and lever presentation. Single-unit firing rates based on CP detection in four task windows are color coded as in Figure 5B. To the right, average spike waveform for the first (black) and
last (red) 100 spikes of the session, confirming that the observed rate changes could not be ascribed to recording artifacts (Fig. 2). D, Fraction of single units for which the evolution of firing
rates within one window significantly correlates with that within a second window. E, Firing-rate changes during ITI are most coordinated with those occurring during the delay period.
Absolute distance in trials between the occurrence of a single-unit CP in ITI and the closest single-unit CP of the same unit in the cue-light, delay-period, and lever-presentation windows. Plots
show the mean6 1.96 SEM (red and gray) and SD (purple). Open circles mark values for individual animals.
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with the observed lags in temporal coordination between single-
unit CPs during the cue-light window and either behavioral CP10%
or behavioral CP50% values (Fig. 6, compareD and E, respectively),
suggesting that changes in PL response to cue light occurred
between drops of 10% and 50% in the response probability of an
animal.

The previous analyses showed that behavioral CPs were
anticipated by a coordinated change in firing rate that affected all
task windows. Moreover, the ability to predict behavior from
population vectors did not differ between task windows
(repeated-measures one-way ANOVA on Dk computed on the
four windows; main effect: F(3,27) = 1.3, p=0.3; Fig. 7B). These
results suggest that behavioral extinction corresponds to a global
reorganization of network activity across all task phases, rather
than to a modulation of unit responses to specific conditioned
stimuli. Figure 7C shows raster plots of two exemplary units
from the same animal, depicting how changes in baseline firing
rate across the whole trial occurred in coordination with behav-
ioral extinction, both in stimulus-responsive (Fig. 7C, bottom)
and nonresponsive (Fig. 7C, top) units. Firing-rate changes dur-
ing the four task windows of interest (analyzed pairwise) corre-
lated in ;22% of the recorded units (Spearman’s correlation,
Benjamini–Hochberg adjusted, p, 0.05; Fig. 7D). Notably, de-
spite the ITI window being positioned between the lever-presen-
tation and cue-light windows of two successive trials, the firing
rate during the ITI was significantly correlated for more units
with that during the delay-period window (30%) than that dur-
ing the cue-light (19%) and lever-presentation (14%) windows.
Since changes in firing rate were better coordinated between the
ITI and the delay period than between the ITI and any other task
phase, we expected that single-unit CP occurrence was compara-
bly better aligned between the ITI and the delay-period windows
than between the ITI and other task phases. To evaluate this hy-
pothesis, we tested whether the lag between the occurrence of
single-unit CPs during the ITI and single-unit CPs during other
task windows was comparable for the three windows (see
Materials and Methods). As expected from Figure 7D, single-
unit CPs during the ITI were most coordinated with those dur-
ing the delay-period window (repeated-measures one-way
ANOVA with Greenhouse–Geisser correction: main effect,
F(1.1,10.3) = 17.2, p=0.001, post hoc Bonferroni correction; ITI/
light vs ITI/delay, p=0.0008; ITI/lever vs ITI/delay, p=0.001;
ITI/light vs ITI/lever, p= 0.07; Fig. 7E). This agrees with previous
observations that rate changes in accordance with reward expect-
ations were particularly prominent within delay phases, during
which the animal neither had to process specific sensory stimuli
nor had to initiate specific responses (Watanabe, 1996; Leon and
Shadlen, 1999). In our extinction paradigm, conditioned stimuli
were identical for each trial, with only the active lever being cued
throughout the session. Thus, it is possible that animals familiar
with the task encoded reward expectation in PL neurons, not
only during the delay period, but also during ITI.

In summary, PL encoded strategy changes by coordinating
single-unit CPs in anticipation of behavioral changes. Single-unit
CPs mark longer-term transitions in the firing rate of a unit, and
hence the population-wide coordination of such events indicates
a complete reorganization of the neural activity pattern. Such dy-
namics are compatible with a transition between two attractor
states in the neural state space (Wang, 2002). Consistent with
this idea, rate changes were not limited to any particular task

phase, or even to the proper trial periods, but were consistent
across all phases including the ITI, and hence marked a global
transition in the prefrontal state, possibly driven by updates in
reward expectancy. In the new operational state, task events were
still reflected in PL activity but did not trigger behavioral
responses.

Discussion
The rodent mPFC is an anatomically and functionally heteroge-
neous structure consisting, among other regions, of the PL and
IL. Seminal studies on fear extinction have suggested a dichoto-
mous role of these two regions, where PL controls the expression
of conditioned responses while IL mediates their extinction (for
review, see Quirk and Mueller, 2008). In recent years, however,
lesion (Fragale et al., 2016), pharmacological inactivation
(Ramanathan et al., 2018; Caballero et al., 2019), and optogenetic
stimulation (Sparta et al., 2014; Marek et al., 2018) studies chal-
lenged this view, providing increasing evidence that PL is a criti-
cal locus for extinction of reward-seeking behaviors and
conditioned fear (for review, see Moorman et al., 2015). Using a
within-session extinction paradigm, we studied PL dynamics
leading to the extinction of conditioned reward-seeking behavior
in rats. Critically, by using newly developed model-based statisti-
cal tools, we were able to identify and parametrize trial-to-trial
changes in both behavior and mPFC dynamics, and to highlight
fine temporal relations between them. This analysis revealed that
a widespread single-unit coordination guides extinction learning
by pushing PL toward a new operational state.

The methodology developed here to study learning has a few
advantages to conventional analysis methods. On the behavioral
side, several experimental paradigms have shown that behavior
undergoes a sudden switch within few trials from low to high
performance (Gallistel et al., 2004; Durstewitz et al., 2010). Such
sudden transitions cannot be accounted for by standard rein-
forcement learning models (Sutton and Barto, 1998), which can
only produce gradual changes in performance. Our approach, on
the other hand, infers the learning curve from the observed
behavior by considering the latter an instantiation of an underly-
ing stochastic process. Unlike other similar model-based statisti-
cal methods (Smith et al., 2004; Deliano et al., 2016; Pelánek,
2017), our behavioral model allows us to explicitly infer the
number, onset, duration, and magnitude of several learning epi-
sodes. On the neural side, using the PARCS method (Toutounji
and Durstewitz, 2018) allows us to identify multiple neural
change points both in single units and across the population
while avoiding to average out change points by collapsing the
data into a single peristimulus time histogram. Faced with a
small number of trials per animal, a crucial practical advantage
of using PARCS relative to other methods (Olshen et al., 2004;
Cho and Fryzlewicz, 2015) is that it avoids segmenting the data
when estimating multiple CPs. Segmentation, in fact, reduces the
number of data points available for statistical testing, thus limit-
ing the statistical power of the test (Toutounji and Durstewitz,
2018). Furthermore, change points are nonlinear phenomena
that may indicate bifurcations between internal attractor states
because of gradual changes in internal parameters (Wang, 2002),
which cannot be accounted for by conventional analyses based
on linear methods.

During across-session extinction, mPFC responsiveness to
conditioned stimuli persists over subsequent unreinforced days
(rat, PL/IL: Moorman and Aston-Jones, 2015). We showed here
that during within-session extinction as well, the population
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response to conditioned task stimuli remained equally strong,
even when the animal stopped acting on them. This sustained
responsiveness did not correspond, however, to stability in sin-
gle-unit coding. While, on the one hand, some single units in
mPFC can maintain their response pattern across days (rat, PL:
Powell and Redish, 2014; mouse, ACC: Brebner et al., 2020), on
the other hand, we found that the majority of units significantly
changed their average firing rate and their stimulus responsive-
ness within tens of minutes. Changes in unit coding were
widespread along the session and occurred under stable ex-
perimental conditions and stable behavioral responses as
well as during within-session extinction. In fact, changes in
single-unit coding per se do not necessarily imply changes in
population coding, where coding properties might be pre-
served by redundancies in the ensemble representation
(Narayanan et al., 2005; Puchalla et al., 2005; Hirokawa et al.,
2019) or within neural trajectories (Mante et al., 2013; Enel
et al., 2016). The comparable degree of rate changes during
periods of distinct cognitive demands, such as maintenance
and within-session extinction, may then suggest that tran-
sient representations are an intrinsic feature of prefrontal dy-
namics, rather than the result of specific computations.

Upon first inspection, we found no discernible difference
between PL activity during maintenance and within-session
extinction with respect to different single-unit rate change statis-
tics. A more detailed analysis revealed, however, a strong tempo-
ral coordination of rate updates across the entire population
during behavioral extinction, which was not present when no
learning was required. These two effects, the reorganization of
PL activity regardless of learning and the population-level tem-
poral coordination specific to the learning phase, resonate with
recent findings on PL plasticity during sleep in response to rule
learning (Singh et al., 2019), suggesting that within PL similar
neural mechanisms may underlie both the formation and fad-
ing of response–reward associations. In fact, ample evidence
shows that in rat prefrontal cortex, particularly in its prelimbic
subregion, neural population dynamics are reshaped before
rule or reversal learning (Rich and Shapiro, 2009; Durstewitz et
al., 2010; Karlsson et al., 2012; Powell and Redish, 2016;
Malagon-Vina et al., 2018). Our results show that sudden popu-
lation-wide reorganization is not exclusive to the acquisition of
new behavioral strategies or to competition between conflicting
strategies, but also occurs when reward seeking is suppressed
per se This finding offers circuit-level evidence in support of
behavioral and cognitive theories of extinction learning, which
view it as a form of new associative learning, rather than mere
unlearning (Dunsmoor et al., 2015).

Our analysis further demonstrates that PL network reorgan-
ization during extinction learning is a global property, not anch-
ored to a particular cognitive phase of the task. Indeed, we
observed coordinated changes in neural activity during multiple
trial stages, not only confined to specific windows within the
trial, but also in resting periods between trials. Moreover, popu-
lation firing rates predicted changes in animal behavior equally
well regardless of the task window considered. These observa-
tions were therefore suggestive of the presence of two distinct
states that globally characterized PL activity before and after the
suppression of behavioral responses. In the presence of ambigu-
ous sensory information, successful action selection is based on
forming a reliable model of the environment as represented by
the belief states of the animal (Babayan et al., 2018). The mPFC
plays a fundamental role in the computation of belief states and

in cognitive control (Ridderinkhof et al., 2004; Gershman and
Uchida, 2019; Sharpe et al., 2019). Our results suggest that updat-
ing belief regarding the availability of reward following extinc-
tion may correspond to a shift within the phase space of the
resting state of the network.

Theoretical work (Katori et al., 2011) and experimental work
(rat, PL: Durstewitz et al., 2010; primate, dorsolateral PFC:
Wimmer et al., 2014) support the presence of attractor dynamics
in PFC. Specifically, Redish et al. (2007) pushed forward the hy-
pothesis that the prolonged absence of an expected reward would
lead to the formation of a new attractor state within mPFC activ-
ity that represents the changed contingencies. Within this frame-
work, a shift in phase space, as suggested by our data, may
correspond either to a transition between two pre-existing attrac-
tor states led by external inputs [e.g., from the hippocampus
(Euston et al., 2012; Sotres-Bayon et al., 2012) or from the amyg-
dala (McGinty and Grace, 2008; Senn et al., 2014)] or to the for-
mation of a new attractor state through plasticity (Toutounji and
Pipa, 2014; Dunsmoor et al., 2015) or neuromodulatory proc-
esses (Harris and Thiele, 2011). Upon inspecting single-unit
spike trains during extinction trials, we observed units within the
same network with both slow and abrupt rate changes. This may
suggest a third possible scenario in which learning slowly modu-
lates the activity of a few neuronal ensembles, possibly on
updates of reward expectancy, which internally lead network dy-
namics to undergo an abrupt transition between two pre-existing
global attractor states.

The PL cortex in rodents has homologies with rostral ACC in
humans (Brodmann’s area 32) both at the anatomic and func-
tional level (Laubach et al., 2018; van Heukelum et al., 2020).
Like PL in rats, rostral ACC in humans is involved in cognitive
control (di Pellegrino et al., 2007; Narayanan et al., 2013), behav-
ioral flexibility (Kim et al., 2011), and drug seeking (Goldstein
and Volkow, 2011). Beyond providing insights into motivational
processes and learning, understanding reward extinction-learn-
ing mechanisms carries translational value for addiction research
as well. Hence, while seeking reward is fundamental for survival,
excessive drug seeking following cue exposure is a central com-
ponent of addictive behavior. One behavioristic psychological
approach that is used to treat individuals with alcoholism or
drug addiction is cue exposure therapy (CET; i.e., extinction
therapy). In CET, patients are exposed to relevant drug cues to
extinguish conditioned responses. CET shows varying degrees of
efficacy (Mellentin et al., 2017), and therefore it is of critical im-
portance to understand its underlying neurobiological mecha-
nisms. Our results indicate that extinction of alcohol-seeking
behavior is not associated with a loss in mPFC responsiveness to
conditioned stimuli. Instead, because of changes in the belief
state of the subject, extinction manifests as a network-wide tran-
sition between two states corresponding to distinct behaviors:
response (or consumption) and omission (or abstinence). This
observation may thus suggest an alternative approach toward a
pharmacologically driven CET that targets the relative strength
and stability of the neural attractors representing the consump-
tion and omission states. Such an intervention may go in two
directions, either weakening the consumption state to facilitate
extinction, thus avoiding maladaptive persistence of harmful
behaviors, or strengthening the abstinence state to reduce the
triggering effect of conditioned stimuli, thus reducing their va-
lence and attenuating their ability to induce relapse.
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