12 research outputs found

    Прихована та захищена передача інформації в сенсорних і локально-регіональних радіомережах

    Get PDF
    Для реалізації прихованої у шумах радіоканалу та захищеної передачі пакетів даних у радіомережах на кожній абонентській системі запропонована реалізація комплексу алгоритмів, включаючи компактне кодування даних, криптостійке кодування даних з використанням одноразових шифрів, завадостійке кодування даних пакетів з використанням абонентом-відправником та абонентом-отримувачем пакету генерації псевдовипадкових послідовностей, перемішування даних та формування шумоподібних інтервально-імпульсних послідовностей з базою сигналу, яка попередньо узгоджена з поточним рівнем шумів у каналі зв’язку.Для реализации скрытой в шумах радиоканала и защищенной передачи пакетов данных в радиосетях на на каждой абонентской системе предложена реализация комплекса алгоритмов, включая компактное кодирование данных, криптоустойчивое кодирование данных с использованием одноразовых шифров, помехоустойчивое кодирование данных пакетов с использованием абонентом-отправителем и абонентом-получателем пакета генерации псевдослучайных последовательностей, перемешивание данных и формирование шумоподобных интервально-импульсных последовательностей с базой сигнала, которая предварительно согласована с текущим уровнем шумов в канале связи.To implement in radio networks secure data transfer hidden in radio noises on each subscriber system, it is proposed the implementation of complex algorithms and crypto-resistant encoding data with single-use codes, antinoise encoding data packets with a subscriber-sender and recipient of the call-receiver package generation pseudorandom sequences, data mixing and formation of noise-interval pulse sequence with a base signal that previously coordinated with the current noise in the channel of communication

    Enhancement of Immune Response Against Bordetella spp. by Disrupting Immunomodulation

    Get PDF
    Well-adapted pathogens must evade clearance by the host immune system and the study of how they do this has revealed myriad complex strategies and mechanisms. Classical bordetellae are very closely related subspecies that are known to modulate adaptive immunity in a variety of ways, permitting them to either persist for life or repeatedly infect the same host. Exploring the hypothesis that exposure to immune cells would cause bordetellae to induce expression of important immunomodulatory mechanisms, we identified a putative regulator of an immunomodulatory pathway. The deletion of btrS in B. bronchiseptica did not affect colonization or initial growth in the respiratory tract of mice, its natural host, but did increase activation of the inflammasome pathway, and recruitment of inflammatory cells. The mutant lacking btrS recruited many more B and T cells into the lungs, where they rapidly formed highly organized and distinctive Bronchial Associated Lymphoid Tissue (BALT) not induced by any wild type Bordetella species, and a much more rapid and strong antibody response than observed with any of these species. Immunity induced by the mutant was measurably more robust in all respiratory organs, providing completely sterilizing immunity that protected against challenge infections for many months. Moreover, the mutant induced sterilizing immunity against infection with other classical bordetellae, including B. pertussis and B. parapertussis, something the current vaccines do not provide. These findings reveal profound immunomodulation by bordetellae and demonstrate that by disrupting it much more robust protective immunity can be generated, providing a pathway to greatly improve vaccines and preventive treatments against these important pathogens

    Blood or Serum Exposure Induce Global Transcriptional Changes, Altered Antigenic Profile, and Increased Cytotoxicity by Classical Bordetellae

    Get PDF
    The classical bordetellae sense and respond to a variety of environments outside and within their mammalian hosts. By causing inflammation and tissue damage, we reasoned that bordetellae are likely to encounter components of blood and/or serum during the course of a respiratory infection, and that detecting and responding to these would be advantageous. Therefore, we hypothesized that classical bordetellae have the ability to sense and respond to blood or serum. Blood or serum exposure resulted in substantial transcriptional changes in Bordetella bronchiseptica, including enhanced expression of many virulence-associated genes. Exposure to blood or serum additionally elicited production of multiple antigens not otherwise detectable, and led to increased bacterial cytotoxicity against macrophages. Transcriptional responses to blood/serum were observed in a Bvg− phase-locked mutant, indicating that the response is not solely dependent on a functional BvgAS system. Similar transcriptional responses to blood/serum were observed for the other classical bordetellae, Bordetella pertussis and Bordetella parapertussis. These data suggest the classical bordetellae respond to signals present in blood and serum by changing their behavior in ways that likely contribute to their remarkable success, via effects on pathogenesis, persistence and/or transmission between hosts

    Human African Trypanosomiasis (sleeping sickness) : characterization of genes involved in symbionts – tsetse fly – trypanosomes interactions.

    No full text
    Les glossines (mouches tsétsé) sont les vecteurs des trypanosomes africains, responsables de la Trypanosomose Humaine Africaine (THA) ou maladie du sommeil en Afrique sub-saharienne. De nouvelles stratégies de lutte contre la THA visent à utiliser les symbiontes de la glossine pour augmenter sa réfraction à l'infection par les trypanosomes. La mise en place de telles approches nécessite une bonne connaissance des bases moléculaires et cellulaires des interactions entre les symbiontes, la glossine et le trypanosome. Les objectifs de cette thèse étaient, i) d'évaluer l'évolution des densités des symbiontes (Wigglesworthia glossinidia et Sodalis glossinidius) au cours du cycle de développement du vecteur et ii) de caractériser les gènes de Sodalis, Glossina palpalis gambiensis et Trypanosome brucei gambiense en interaction et qui s'expriment différentiellement au cours de l'infection. Nous avons pu montrer la présence permanente des deux symbiontes quel que soit le stade de développement de la glossine, ce qui permet leur utilisation dans le cadre du contrôle des vecteurs. Par la suite, des infections expérimentales ont été réalisées sur des glossines d'insectarium. Des glossines de l'espèce G. p. gambiensis ont été gorgées sur des souris infectées par T. b. gambiense. L'analyse des métatranscriptomes des glossines infectées versus réfractaires à l'infection nous ont permis de mettre en évidence les gènes de Sodalis, G. p. gambiensis et T. b. gambiense différentiellement exprimés aux étapes clé de l'infection. Les résultats qui découlent de cette thèse mettent la lumière sur la complexité des interactions Sodalis - G. p. gambiensis - T. b. gambiense et soulignent l'implication des bactériophages du symbionte S. glossinidius dans la réfraction des glossines à l'infection. Mots clés : maladie du sommeil, mouche tsétsé, trypanosome, symbiontes, compétence vectorielle, expression de gènes.Tsetse flies are the vectors of African trypanosomes, the causative agents of human African trypanosomiasis (sleeping sickness)in sub-saharan Africa. New sleeping sickness control strategies plan to use tsetse gut symbionts to increase tsetse flies refractoriness to trypanosomes infection. Such approaches require good knowledge on the molecular and cellular basis of interactions between symbionts, tsetse fly and trypanosome. This thesis aimed to i) assess the evolution of Glossina palpalis gambiensis symbionts (Wigglesworthia glossinidia and Sodalis glossinidius) densities throughout the host fly development cycle and ii) to characterize genes of Sodalis, G. p. gambiensis and Trypanosoma brucei gambiense in interaction, which are differentially expressed during the infection. We showed that both symbionts are present in all tsetse fly development stages, allowing their use in the context of vector control. Subsequently, experimental infections were performed on colonies flies. G. p. gambiensis female flies were fed on T. b. gambiense hosting mice. Transcriptome of infected flies and flies that have cleared trypanosome they ingested were analysed. This allow us identifying genes of Sodalis, G. p. gambiensis and T. b. gambiense differentially expressed at the infection key stages. Our results highlight the complexity of interactions between Sodalis, G. p. gambiensis, T. b. gambiense and underline the involvement of bacteriophages hosted by S. glossinidius in tsetse fly refractoriness to trypanosome infection. Key words: sleeping sickness; tsetse fly; trypanosome; symbionts; vector competence; gene expression

    Comparative Genomics of Glossina palpalis gambiensis and G. morsitans morsitans to Reveal Gene Orthologs Involved in Infection by Trypanosoma brucei gambiense

    Get PDF
    International audienceBlood-feeding Glossina palpalis gambiense (Gpg) fly transmits the single-celled eukaryotic parasite Trypanosoma brucei gambiense (Tbg), the second Glossina fly African trypanosome pair being Glossina morsitans/T.brucei rhodesiense. Whatever the T. brucei subspecies, whereas the onset of their developmental program in the zoo-anthropophilic blood feeding flies does unfold in the fly midgut, its completion is taking place in the fly salivary gland where does emerge a low size metacyclic trypomastigote population displaying features that account for its establishment in mammals-human individuals included. Considering that the two Glossina-T. brucei pairs introduced above share similarity with respect to the developmental program of this African parasite, we were curious to map on the Glossina morsitans morsitans (Gmm), the Differentially Expressed Genes (DEGs) we listed in a previous study. Briefly, using the gut samples collected at days 3, 10, and 20 from Gpg that were fed or not at day 0 on Tbg-hosting mice, these DGE lists were obtained from RNA seq-based approaches. Here, post the mapping on the quality controlled DEGs on the Gmm genome, the identified ortholog genes were further annotated, the resulting datasets being compared. Around 50% of the Gpg DEGs were shown to have orthologs in the Gmm genome. Under one of the three Glossina midgut sampling conditions, the number of DEGs was even higher when mapping on the Gmm genome than initially recorded. Many Gmm genes annotated as "Hypothetical" were mapped and annotated on many distinct databases allowing some of them to be properly identified. We identify Glossina fly candidate genes encoding (a) a broad panel of proteases as well as (b) chitin-binding proteins, (c) antimicrobial peptide production-Pro3 protein, transferrin, mucin, atttacin, cecropin, etc-to further select in functional studies, the objectives being to probe and validated fly genome manipulation that prevents the onset of the developmental program of one or the other T. brucei spp. stumpy form sampled by one of the other bloodfeeding Glossina subspecies

    Evolution of Bordetellae from Environmental Microbes to Human Respiratory Pathogens: Amoebae as a Missing Link

    No full text
    The genus Bordetella comprises several bacterial species that colonize the respiratory tract of mammals. It includes B. pertussis, a human-restricted pathogen that is the causative agent of Whooping Cough. In contrast, the closely related species B. bronchiseptica colonizes a broad range of animals as well as immunocompromised humans. Recent metagenomic studies have identified known and novel bordetellae isolated from different environmental sources, providing a new perspective on their natural history. Using phylogenetic analysis, we have shown that human and animal pathogenic bordetellae have most likely evolved from ancestors that originated from soil and water. Our recent study found that B. bronchiseptica can evade amoebic predation and utilize Dictyostelium discoideum as an expansion and transmission vector, which suggests that the evolutionary pressure to evade the amoebic predator enabled the rise of bordetellae as respiratory pathogens. Interactions with amoeba may represent the starting point for bacterial adaptation to eukaryotic cells. However, as bacteria evolve and adapt to a novel host, they can become specialized and restricted to a specific host. B. pertussis is known to colonize and cause infection only in humans, and this specialization to a closed human-to-human lifecycle has involved genome reduction and the loss of ability to utilize amoeba as an environmental reservoir. The discoveries from studying the interaction of Bordetella species with amoeba will elicit a better understanding of the evolutionary history of these and other important human pathogens
    corecore