682 research outputs found

    Seed conservation in ex situ genebanks - genetic studies on longevity in barley

    Get PDF
    Recognizing the danger due to a permanent risk of loss of the genetic variability of cultivated plants and their wild relatives in response to changing environmental conditions and cultural practices, plant ex situ genebank collections were created since the beginning of the last century. World-wide more than 6 million accessions have been accumulated of which more than 90% are stored as seeds. Research on seed longevity was performed in barley maintained for up to 34 years in the seed store of the German ex situ genebank of the Leibniz-Institute of Plant Genetics and Crop Plant Research in Gatersleben. A high intraspecific variation was detected in those natural aged accessions. In addition three doubled haploid barley mapping populations being artificial aged were investigated to study the inheritance of seed longevity. Quantitative trait locus (QTL) mapping was based on a transcript map. Major QTLs were identified on chromosomes 2H, 5H (two) and 7H explaining a phenotypic variation of up to 54%. A sequence homology search was performed to derive the putative function of the genes linked to the QTLs

    Shell Model Study of the Neutron-Rich Nuclei around N=28

    Get PDF
    We describe the properties of the neutron rich nuclei around N=28 in the shell mode framework. The valence space comprises the sdsd shell for protons an the pfpf shell for neutrons without any restriction. Good agreement is found with the available experimental data. The N=28 shell closure, even if eroded due to the large neutron excess, persists. The calculations predict that 40^{40}S and 42^{42}S are deformed with β=0.29\beta=0.29 and β=0.32\beta=0.32 respectively.Comment: 17 pages and 19 figures, LateX, RevTe

    QTLs for salt tolerance in three different barley mapping populations 2006

    Get PDF
    Soil salinity is one of the crucial factors limiting crop production. Progression of salinisation of agriculturally arable land is mainly connected with mismanagement of water in irrigation systems, in particular under arid and semiarid climate conditions and global changes of water flow in the landscape. Selection of salt tolerant genotypes is necessary to ensure yield and to reclaim salt affected soils. The development of molecular marker(s) could facilitate the selection process. Phenotyping of mapping populations under salt stress conditions and calculation of QTLs are suitable instruments to detect markers that are responsible for tolerance/sensitivity. However, a quantitative inherited trait like salt tolerance requires a range of adaptations, with a whole host of genes interacting with each other to produce the visible phenotype

    Spectroscopy of 35^{35}P using the one-proton knockout reaction

    Get PDF
    The structure of 35^{35}P was studied with a one-proton knockout reaction at88~MeV/u from a 36^{36}S projectile beam at NSCL. The γ\gamma rays from thedepopulation of excited states in 35^{35}P were detected with GRETINA, whilethe 35^{35}P nuclei were identified event-by-event in the focal plane of theS800 spectrograph. The level scheme of 35^{35}P was deduced up to 7.5 MeV usingγγ\gamma-\gamma coincidences. The observed levels were attributed to protonremovals from the sdsd-shell and also from the deeply-bound p_1/2p\_{1/2} orbital.The orbital angular momentum of each state was derived from the comparisonbetween experimental and calculated shapes of individual (γ\gamma-gated)parallel momentum distributions. Despite the use of different reactions andtheir associate models, spectroscopic factors, C2SC^2S, derived from the36^{36}S (1p)(-1p) knockout reaction agree with those obtained earlier from36^{36}S(dd,\nuc{3}{He}) transfer, if a reduction factor R_sR\_s, as deducedfrom inclusive one-nucleon removal cross sections, is applied to the knockout transitions.In addition to the expected proton-hole configurations, other states were observedwith individual cross sections of the order of 0.5~mb. Based on their shiftedparallel momentum distributions, their decay modes to negative parity states,their high excitation energy (around 4.7~MeV) and the fact that they were notobserved in the (dd,\nuc{3}{He}) reaction, we propose that they may resultfrom a two-step mechanism or a nucleon-exchange reaction with subsequent neutronevaporation. Regardless of the mechanism, that could not yet be clarified, thesestates likely correspond to neutron core excitations in \nuc{35}{P}. Thisnewly-identified pathway, although weak, offers the possibility to selectivelypopulate certain intruder configurations that are otherwise hard to produceand identify.Comment: 5 figures, 1 table, accepted for publication in Physical Review

    Tetrahedral Symmetry in Ground- and Low-Lying States of Exotic A ~ 110 Nuclei

    Full text link
    Recent theoretical calculations predict a possible existence of nuclei with tetrahedral symmetry: more precisely, the mean-field hamiltonians of such nuclei are symmetric with respect to double point-group Td. In this paper, we focus on the neutron-rich Zirconium isotopes as an example and present realistic mean-field calculations which predict tetrahedral ground-state configurations in 108,110Zr and low-lying excited states of tetrahedral symmetry in a number of N > 66 isotopes. The motivations for focusing on these nuclei, as well as a discussion of the possible experimental signatures of tetrahedral symmetry are also presented.Comment: Accepted in Phys. Rev. C - Rapid Communication

    Nuclear break-up of 11Be

    Full text link
    The break-up of 11Be was studied at 41AMeV using a secondary beam of 11Be from the GANIL facility on a 48Ti target by measuring correlations between the 10Be core, the emitted neutrons and gamma rays. The nuclear break-up leading to the emission of a neutron at large angle in the laboratory frame is identified with the towing mode through its characteristic n-fragment correlation. The experimental spectra are compared with a model where the time dependent Schrodinger equation (TDSE) is solved for the neutron initially in the 11 Be. A good agreement is found between experiment and theory for the shapes of neutron experimental energies and angular distributions. The spectroscopic factor of the 2s orbital is tentatively extracted to be 0.46+-0.15. The neutron emission from the 1p and 1d orbitals is also studied

    Unveiling the intruder deformed 02+^+_2 state in 34^{34}Si

    Get PDF
    The 02+^+_2 state in 34^{34}Si has been populated at the {\sc Ganil/Lise3} facility through the β\beta-decay of a newly discovered 1+^+ isomer in 34^{34}Al of 26(1) ms half-life. The simultaneous detection of e+ee^+e^- pairs allowed the determination of the excitation energy E(02+^+_2)=2719(3) keV and the half-life T1/2_{1/2}=19.4(7) ns, from which an electric monopole strength of ρ2\rho^2(E0)=13.0(0.9)×103\times10^{-3} was deduced. The 21+^+_1 state is observed to decay both to the 01+^+_1 ground state and to the newly observed 02+^+_2 state (via a 607(2) keV transition) with a ratio R(21+^+_101+/21+\rightarrow0^+_1/2^+_102+\rightarrow0^+_2)=1380(717). Gathering all information, a weak mixing with the 01+^+_1 and a large deformation parameter of β\beta=0.29(4) are found for the 02+^+_2 state, in good agreement with shell model calculations using a new {\sc sdpf-u-mix} interaction allowing \textit{np-nh} excitations across the N=20 shell gap.Comment: 5 pages, 3 figures, accepted for publication in Physical Review Letter

    Low Energy States of 3181Ga50^{81}_{31} Ga_{50} : Elements on the Doubly-Magic Nature of 78^{78}Ni

    Get PDF
    Excited levels were attributed to 3181^{81}_{31}Ga50_{50} for the first time which were fed in the β\beta-decay of its mother nucleus 81^{81}Zn produced in the fission of nat^{nat}U using the ISOL technique. We show that the structure of this nucleus is consistent with that of the less exotic proton-deficient N=50 isotones within the assumption of strong proton Z=28 and neutron N=50 effective shell effects.Comment: 4 pages, REVTeX 4, 5 figures (eps format

    Large scale shell model calculations for odd-odd 5862^{58-62}Mn isotopes

    Full text link
    Large scale shell model calculations have been carried out for odd-odd 5862^{58-62}Mn isotopes in two different model spaces. First set of calculations have been carried out in full fp\it{fp} shell valence space with two recently derived fp\it{fp} shell interactions namely GXPF1A and KB3G treating 40^{40}Ca as core. The second set of calculations have been performed in fpg9/2{fpg_{9/2}} valence space with the fpgfpg interaction treating 48^{48}Ca as core and imposing a truncation by allowing up to a total of six particle excitations from the 0f7/2_{7/2} orbital to the upper fp\it{fp} orbitals for protons and from the upper fp\it{fp} orbitals to the 0g9/2_{9/2} orbital for neutron. For low-lying states in 58^{58}Mn, the KB3G and GXPF1A both predicts good results and for 60^{60}Mn, KB3G is much better than GXPF1A. For negative parity and high-spin positive parity states in both isotopes fpgfpg interaction is required. Experimental data on 62^{62}Mn is sparse and therefore it is not possible to make any definite conclusions. More experimental data on negative parity states is needed to ascertain the importance of 0g9/2_{9/2} and higher orbitals in neutron rich Mn isotopes.Comment: 5 pages, 4 figures, Submitted to Eur. Phys. J.
    corecore