682 research outputs found
Seed conservation in ex situ genebanks - genetic studies on longevity in barley
Recognizing the danger due to a permanent risk of loss of the genetic variability of cultivated plants and their wild relatives in response to changing environmental conditions and cultural practices, plant ex situ genebank collections were created since the beginning of the last century. World-wide more than 6 million accessions have been accumulated of which more than 90% are stored as seeds. Research on seed longevity was performed in barley maintained for up to 34 years in the seed store of the German ex situ genebank of the Leibniz-Institute of Plant Genetics and Crop Plant Research in Gatersleben. A high intraspecific variation was detected in those natural aged accessions. In addition three doubled haploid barley mapping populations being artificial aged were investigated to study the inheritance of seed longevity. Quantitative trait locus (QTL) mapping was based on a transcript map. Major QTLs were identified on chromosomes 2H, 5H (two) and 7H explaining a phenotypic variation of up to 54%. A sequence homology search was performed to derive the putative function of the genes linked to the QTLs
Shell Model Study of the Neutron-Rich Nuclei around N=28
We describe the properties of the neutron rich nuclei around N=28 in the
shell mode framework. The valence space comprises the shell for protons an
the shell for neutrons without any restriction. Good agreement is found
with the available experimental data. The N=28 shell closure, even if eroded
due to the large neutron excess, persists. The calculations predict that
S and S are deformed with and
respectively.Comment: 17 pages and 19 figures, LateX, RevTe
QTLs for salt tolerance in three different barley mapping populations 2006
Soil salinity is one of the crucial factors limiting crop production. Progression of salinisation of agriculturally arable land is mainly connected with mismanagement of water in irrigation systems, in particular under arid and semiarid climate conditions and global changes of water flow in the landscape. Selection of salt tolerant genotypes is necessary to ensure yield and to reclaim salt affected soils. The development of molecular marker(s) could facilitate the selection process. Phenotyping of mapping populations under salt stress conditions and calculation of QTLs are suitable instruments to detect markers that are responsible for tolerance/sensitivity. However, a quantitative inherited trait like salt tolerance requires a range of adaptations, with a whole host of genes interacting with each other to produce the visible phenotype
Spectroscopy of P using the one-proton knockout reaction
The structure of P was studied with a one-proton knockout reaction
at88~MeV/u from a S projectile beam at NSCL. The rays from
thedepopulation of excited states in P were detected with GRETINA,
whilethe P nuclei were identified event-by-event in the focal plane of
theS800 spectrograph. The level scheme of P was deduced up to 7.5 MeV
using coincidences. The observed levels were attributed to
protonremovals from the -shell and also from the deeply-bound
orbital.The orbital angular momentum of each state was derived from the
comparisonbetween experimental and calculated shapes of individual
(-gated)parallel momentum distributions. Despite the use of different
reactions andtheir associate models, spectroscopic factors, , derived
from theS knockout reaction agree with those obtained earlier
fromS(,\nuc{3}{He}) transfer, if a reduction factor , as
deducedfrom inclusive one-nucleon removal cross sections, is applied to the
knockout transitions.In addition to the expected proton-hole configurations,
other states were observedwith individual cross sections of the order of
0.5~mb. Based on their shiftedparallel momentum distributions, their decay
modes to negative parity states,their high excitation energy (around 4.7~MeV)
and the fact that they were notobserved in the (,\nuc{3}{He}) reaction, we
propose that they may resultfrom a two-step mechanism or a nucleon-exchange
reaction with subsequent neutronevaporation. Regardless of the mechanism, that
could not yet be clarified, thesestates likely correspond to neutron core
excitations in \nuc{35}{P}. Thisnewly-identified pathway, although weak, offers
the possibility to selectivelypopulate certain intruder configurations that are
otherwise hard to produceand identify.Comment: 5 figures, 1 table, accepted for publication in Physical Review
Tetrahedral Symmetry in Ground- and Low-Lying States of Exotic A ~ 110 Nuclei
Recent theoretical calculations predict a possible existence of nuclei with
tetrahedral symmetry: more precisely, the mean-field hamiltonians of such
nuclei are symmetric with respect to double point-group Td. In this paper, we
focus on the neutron-rich Zirconium isotopes as an example and present
realistic mean-field calculations which predict tetrahedral ground-state
configurations in 108,110Zr and low-lying excited states of tetrahedral
symmetry in a number of N > 66 isotopes. The motivations for focusing on these
nuclei, as well as a discussion of the possible experimental signatures of
tetrahedral symmetry are also presented.Comment: Accepted in Phys. Rev. C - Rapid Communication
Nuclear break-up of 11Be
The break-up of 11Be was studied at 41AMeV using a secondary beam of 11Be
from the GANIL facility on a 48Ti target by measuring correlations between the
10Be core, the emitted neutrons and gamma rays. The nuclear break-up leading to
the emission of a neutron at large angle in the laboratory frame is identified
with the towing mode through its characteristic n-fragment correlation. The
experimental spectra are compared with a model where the time dependent
Schrodinger equation (TDSE) is solved for the neutron initially in the 11 Be. A
good agreement is found between experiment and theory for the shapes of neutron
experimental energies and angular distributions. The spectroscopic factor of
the 2s orbital is tentatively extracted to be 0.46+-0.15. The neutron emission
from the 1p and 1d orbitals is also studied
Unveiling the intruder deformed 0 state in Si
The 0 state in Si has been populated at the {\sc Ganil/Lise3}
facility through the -decay of a newly discovered 1 isomer in
Al of 26(1) ms half-life. The simultaneous detection of pairs
allowed the determination of the excitation energy E(0)=2719(3) keV and
the half-life T=19.4(7) ns, from which an electric monopole strength of
(E0)=13.0(0.9) was deduced. The 2 state is
observed to decay both to the 0 ground state and to the newly observed
0 state (via a 607(2) keV transition) with a ratio
R(2)=1380(717). Gathering all
information, a weak mixing with the 0 and a large deformation parameter
of =0.29(4) are found for the 0 state, in good agreement with
shell model calculations using a new {\sc sdpf-u-mix} interaction allowing
\textit{np-nh} excitations across the N=20 shell gap.Comment: 5 pages, 3 figures, accepted for publication in Physical Review
Letter
Low Energy States of : Elements on the Doubly-Magic Nature of Ni
Excited levels were attributed to Ga for the first time
which were fed in the -decay of its mother nucleus Zn produced in
the fission of U using the ISOL technique. We show that the structure
of this nucleus is consistent with that of the less exotic proton-deficient
N=50 isotones within the assumption of strong proton Z=28 and neutron N=50
effective shell effects.Comment: 4 pages, REVTeX 4, 5 figures (eps format
Large scale shell model calculations for odd-odd Mn isotopes
Large scale shell model calculations have been carried out for odd-odd
Mn isotopes in two different model spaces. First set of calculations
have been carried out in full shell valence space with two recently
derived shell interactions namely GXPF1A and KB3G treating Ca
as core. The second set of calculations have been performed in
valence space with the interaction treating Ca as core and
imposing a truncation by allowing up to a total of six particle excitations
from the 0f orbital to the upper orbitals for protons and
from the upper orbitals to the 0g orbital for neutron. For
low-lying states in Mn, the KB3G and GXPF1A both predicts good results
and for Mn, KB3G is much better than GXPF1A. For negative parity and
high-spin positive parity states in both isotopes interaction is
required. Experimental data on Mn is sparse and therefore it is not
possible to make any definite conclusions. More experimental data on negative
parity states is needed to ascertain the importance of 0g and higher
orbitals in neutron rich Mn isotopes.Comment: 5 pages, 4 figures, Submitted to Eur. Phys. J.
- …