15 research outputs found

    AgroTutor: A Mobile Phone Application Supporting Sustainable Agricultural Intensification

    Get PDF
    Traditional agricultural extension services rely on extension workers, especially in countries with large agricultural areas. In order to increase adoption of sustainable agriculture, the recommendations given by such services must be adapted to local conditions and be provided in a timely manner. The AgroTutor mobile application was built to provide highly specific and timely agricultural recommendations to farmers across Mexico and complement the work of extension agents. At the same time, AgroTutor provides direct contributions to the United Nations Sustainable Development Goals, either by advancing their implementation or providing local data systems to measure and monitor specific indicators such as the proportion of agricultural area under productive and sustainable agriculture. The application is freely available and allows farmers to geo-locate and register plots and the crops grown there, using the phone’s built-in GPS, or alternatively, on top of very high-resolution imagery. Once a crop and some basic data such as planting date and cultivar type have been registered, the application provides targeted information such as weather, potential and historical yield, financial benchmarking information, data-driven recommendations, and commodity price forecasts. Farmers are also encouraged to contribute in-situ information, e.g., soils, management, and yield data. The information can then be used by crop models, which, in turn, send tailored results back to the farmers. Initial feedback from farmers and extension agents has already improved some of the application’s characteristics. More enhancements are planned for inclusion in the future to increase the application’s function as a decision support tool

    Soil sequences atlas. 2

    Get PDF
    TäistekstThis is the second book in the series of Soil Sequence Atlases. The first volume was published in 2014. Main pedogeographic features are presented in the form of sequences to give a comprehensive picture of soils - their genesis and correlations with the environment in typical landscapes of Central Europe from Estonia furthest north, through Latvia, Lithuania, Poland, Germany, Czechia, Slovakia and Hungary to the southernmost Slovenia. Soils of natural landscapes - loess and sand (continental dunes) - are presented, as well as those of plains of various origin, karst lands, low mountains, and anthropically modified soils. Each chapter presents soil profiles supplemented by landscape information and basic analytical data. Then, genetic interpretations of soil properties related to soil forming agents are given as schematic catenas. When one factor changes while the others are more or less stable, the soil sequence can be recognised. Depending on the dominant soil-forming factor affecting repeated soil patterns, different types can be distinguished. Chapters are arranged roughly in accordance with the main soil-forming process in sequences, and referring to the WRB key (peat formation, vertic and gleyic process, podzolisation, humus accumulation, clay illuviation), with one small exception - the Technosols have been placed at the end of book. The main objective of this book is to present the diversity of relations between soil and landscape, climate, hydrology and human relations, and to present interpretations reflecting the World Reference Base for Soil Resources (2015) classification with comments on the choice of qualifiers. Sixteen Reference Soil Groups are featured, and represented by 67 soil profiles. The secondary objective is pedological education. One of the aims of soil science education is to explain to students the relations between landscape and soil cover. The patterns of soil units within landscapes are to some extent predictable. The collected data is intended as a useful educational tool in teaching soil science, supporting understanding of the reasons for the variability of soil cover, and also as a WRB classification guideline. The Atlas was developed as part of the EU Erasmus+ FACES project (Freely Accessible Central European Soil). Marcin Šwitoniak, Przemyslaw Charzynsk

    Calibration induced uncertainty of the EPIC model to estimate climate change impact on global maize yield

    Get PDF
    Understanding the interactions between agricultural production and climate is necessary for sound decision-making in climate policy. Gridded and high-resolution crop simulation has emerged as a useful tool for building this understanding. Large uncertainty exists in this utilization, obstructing its capacity as a tool to devise adaptation strategies. Increasing focus has been given to sources of uncertainties for climate scenarios, input-data, and model, but uncertainties due to model parameter or calibration are still unknown. Here, we use publicly available geographical datasets as input to the Environmental Policy Integrated Climate model (EPIC) for simulating global gridded maize yield. Impacts of climate change are assessed up to the year 2099 under a climate scenario generated by HadEM2-ES under RCP 8.5. We apply five strategies by shifting one specific parameter in each simulation to calibrate the model and understand the effects of calibration. Regionalizing crop phenology or harvest index appears effective to calibrate the model for the globe, but using various values of phenology generates pronounced difference in estimated climate impact. However, projected impacts of climate change on global maize production are consistently negative regardless of the parameter being adjusted. Different values of model parameter results in a modest uncertainty at global level, with difference of the global yield change less than 30% by the 2080s. The uncertainty subjects to decrease if applying model calibration or input data quality control. Calibration has a larger effect at local scales, implying the possible types and locations for adaptatio

    Global Homogeneous Response Units

    Get PDF

    Regional topsoil organic carbon content in the agricultural soils of Slovakia and its drivers, as revealed by the most recent national soil monitoring data

    No full text
    Soil organic carbon (SOC) is a primary constituent of soil organic matter and plays an important role in the regulation of many soil processes, including greenhouse gas emissions. Recently, SOC also became an indicator for monitoring climate change mitigation policies in the agricultural sector. The availability of up-to-date SOC inventories is thus crucial in terms of supporting SOC–related actions at country or sub-country scales. Currently, the National Monitoring System of the Agricultural Soils of Slovakia (CMS-P), whose network of 318 monitoring sites was last surveyed in 2018, is the only available source of up-to-date topsoil SOC data for agricultural land in Slovakia. Although very useful at the national scale, the number of CMS-P observations it contains is too limited for much needed sub-national SOC inventories. We hypothesized that with the aid of well-chosen macro-scale drivers of topsoil SOC accumulation in agricultural land in Slovakia, and by mapping those drivers geographically, we could upscale the CMS-P observations and produce a regional estimate of topsoil SOC. Altitude, land cover, topsoil texture, and soil type were assumed to be the key factors controlling topsoil SOC accumulation in Slovakia, and based on these, the country was classified into 14 macro-scale geographical regions. Typical ranges and mid-class values of 0–30cm topsoil SOC concentrations (%) and stocks (t ha−1) were calculated for each macro-scale region from CMS-P data. The average topsoil SOC content in agricultural land was estimated to be 2.13% (72.9 t ha−1). The highest topsoil SOC stock (> 90 t ha−1) was estimated for the lowlands of Slovakia, and the lowest ( 65 t ha−1) being in LAU1 regions in the south-west, south-east, and north of Slovakia where arable land is most prevalent. Total SOC storage in 0–30cm topsoil of agricultural land in Slovakia was estimated at 118.39 Mt, with two-thirds of this amount stored in arable soils in 33 south-west, south-east, and south LAU1 administrative regions. As there is no alternative and up-to-date dataset on topsoil SOC content in Slovakia, the upscaling algorithm presented in this study is an important step toward utilizing CMS-P data for sub-national SOC inventories. It may also offer a new way of providing inputs to help predict future or alternative regional topsoil SOC accumulation trajectories in Slovakian agricultural land using process-based or statistical models

    Uncertainty in soil data can outweigh climate impact signals in global crop yield simulations

    No full text
    Global gridded crop models (GGCMs) are increasingly used for agro-environmental assessments and estimates of climate change impacts on food production. Recently, the influence of climate data and weather variability on GGCM outcomes has come under detailed scrutiny, unlike the influence of soil data. Here we compare yield variability caused by the soil type selected for GGCM simulations to weather-induced yield variability. Without fertilizer application, soil-type-related yield variability generally outweighs the simulated inter-annual variability in yield due to weather. Increasing applications of fertilizer and irrigation reduce this variability until it is practically negligible. Importantly, estimated climate change effects on yield can be either negative or positive depending on the chosen soil type. Soils thus have the capacity to either buffer or amplify these impacts. Our findings call for improvements in soil data available for crop modelling and more explicit accounting for soil variability in GGCM simulations

    Impacts and Uncertainties of +2∘C of Climate Change and Soil Degradation on European Crop Calorie Supply

    No full text
    Even if global warming is kept below +2°C, European agriculture will be significantly impacted. Soil degradation may amplify these impacts substantially and thus hamper crop production further. We quantify biophysical consequences and bracket uncertainty of +2°C warming on calories supply from 10 major crops and vulnerability to soil degradation in Europe using crop modeling. The Environmental Policy Integrated Climate (EPIC) model together with regional climate projections from the European branch of the Coordinated Regional Downscaling Experiment (EURO-CORDEX) was used for this purpose. A robustly positive calorie yield change was estimated for the EU Member States except for some regions in Southern and South-Eastern Europe. The mean impacts range from +30 Gcal ha−1 in the north, through +25 and +20 Gcal ha−1 in Western and Eastern Europe, respectively, to +10 Gcal ha−1 in the south if soil degradation and heat impacts are not accounted for. Elevated CO2 and increased temperature are the dominant drivers of the simulated yield changes in high-input agricultural systems. The growth stimulus due to elevated CO2 may offset potentially negative yield impacts of temperature increase by +2°C in most of Europe. Soil degradation causes a calorie vulnerability ranging from 0 to 50 Gcal ha−1 due to insufficient compensation for nutrient depletion and this might undermine climate benefits in many regions, if not prevented by adaptation measures, especially in Eastern and North-Eastern Europe. Uncertainties due to future potentials for crop intensification are about 2-50 times higher than climate change impacts

    Impacts and uncertainties of +2°C of climate change and soil degradation on European crop calorie supply

    No full text
    Even if global warming is kept below +2°C, European agriculture will be significantly impacted. Soil degradation may amplify these impacts substantially and thus hamper crop production further. We quantify biophysical consequences and bracket uncertainty of +2°C warming on calories supply from ten major crops and vulnerability to soil degradation in Europe using crop modelling. The Environmental Policy Integrated Climate (EPIC) model together with regional climate projections from the European branch of the Coordinated Regional Downscaling Experiment (EURO-CORDEX) were used for this purpose. A robustly positive calorie yield change was estimated for the EU Member States except for some regions in Southern and South-Eastern Europe. The mean impacts range from +30 Gcal ha–1 in the north, through +25 and +20 Gcal ha–1 in Western and Eastern Europe, respectively, to +10 Gcal ha–1 in the south if soil degradation and heat impacts are not accounted for. Elevated CO2 and increased temperature are the dominant drivers of the simulated yield changes in high-input agricultural systems. The growth stimulus due to elevated CO2 may offset potentially negative yield impacts of temperature increase by +2°C in most of Europe. Soil degradation causes a calorie vulnerability ranging from 0 to 80 Gcal ha–1 due to insufficient compensation for nutrient depletion and this might undermine climate benefits in many regions, if not prevented by adaptation measures, especially in Eastern and North-Eastern Europe. Uncertainties due to future potentials for crop intensification are about two to fifty times higher than climate change impacts.JRC.D.5-Food Securit

    Land Cover and Land Use Change-Driven Dynamics of Soil Organic Carbon in North-East Slovakian Croplands and Grasslands Between 1970 and 2013

    No full text
    Soil organic carbon (SOC) in agricultural land forms part of the global terrestrial carbon cycle and it affects atmospheric carbon dioxide balance. SOC is sensitive to local agricultural management practices that sum up into regional SOC storage dynamics. Understanding regional carbon emission and sequestration trends is, therefore, important in formulating and implementing climate change adaptation and mitigation policies. In this study, the estimation of SOC stock and regional storage dynamics in the Ondavská Vrchovina region (North-Eastern Slovakia) cropland and grassland topsoil between 1970 and 2013 was performed with the RothC model and gridded spatial data on weather, initial SOC stock and historical land cover and land use changes. Initial SOC stock in the 0.3-m topsoil layer was estimated at 38.4 t ha−1 in 1970. The 2013 simulated value was 49.2 t ha−1, and the 1993–2013 simulated SOC stock values were within the measured data range. The total SOC storage in the study area, cropland and grassland areas, was 4.21 Mt in 1970 and 5.16 Mt in 2013, and this 0.95 Mt net SOC gain was attributed to inter-conversions of cropland and grassland areas between 1970 and 2013, which caused different organic carbon inputs to the soil during the simulation period with a strong effect on SOC stock temporal dynamics

    Impacts of population growth, economic development, and technical change on global food production and consumption

    No full text
    Over the next decades mankind will demand more food from fewer land and water resources. This study quantifies the food production impacts of four alternative development scenarios from the Millennium Ecosystem Assessment and the Special Report on Emission Scenarios. Partially and jointly considered are land and water supply impacts from population growth, and technical change, as well as forest and agricultural commodity demand shifts from population growth and economic development. The income impacts on food demand are computed with dynamic elasticities. Simulations with a global, partial equilibrium model of the agricultural and forest sectors show that per capita food levels increase in all examined development scenarios with minor impacts on food prices. Global agricultural land increases by up to 14% between 2010 and 2030. Deforestation restrictions strongly impact the price of land and water resources but have little consequences for the global level of food production and food prices. While projected income changes have the highest partial impact on per capita food consumption levels, population growth leads to the highest increase in total food production. The impact of technical change is amplified or mitigated by adaptations of land management intensities.Food security Population growth Irrigation water scarcity Income development Engel curve Agricultural sector optimization
    corecore