1,195 research outputs found
Hyaluronidase Hyal1 Increases Tumor Cell Proliferation and Motility through Accelerated Vesicle Trafficking
Background: Hyal1 is a turnover enzyme for hyaluronan that accelerates metastatic cancer by increasing cell motility.
Results: Hyal1-overexpressing cells have a higher rate of endocytosis that impacts cargo internalization and recycling.
Conclusion: The higher rate of vesicle trafficking increases motility receptor function and nutrient uptake.
Significance: This novel mechanism implicates Hyal1 trafficking in multiple signaling events during tumor progression
The thermal emission of the exoplanets WASP-1b and WASP-2b
We present a comparative study of the thermal emission of the transiting
exoplanets WASP-1b and WASP-2b using the Spitzer Space Telescope. The two
planets have very similar masses but suffer different levels of irradiation and
are predicted to fall either side of a sharp transition between planets with
and without hot stratospheres. WASP-1b is one of the most highly irradiated
planets studied to date. We measure planet/star contrast ratios in all four of
the IRAC bands for both planets (3.6-8.0um), and our results indicate the
presence of a strong temperature inversion in the atmosphere of WASP-1b,
particularly apparent at 8um, and no inversion in WASP-2b. In both cases the
measured eclipse depths favor models in which incident energy is not
redistributed efficiently from the day side to the night side of the planet. We
fit the Spitzer light curves simultaneously with the best available radial
velocity curves and transit photometry in order to provide updated measurements
of system parameters. We do not find significant eccentricity in the orbit of
either planet, suggesting that the inflated radius of WASP-1b is unlikely to be
the result of tidal heating. Finally, by plotting ratios of secondary eclipse
depths at 8um and 4.5um against irradiation for all available planets, we find
evidence for a sharp transition in the emission spectra of hot Jupiters at an
irradiation level of 2 x 10^9 erg/s/cm^2. We suggest this transition may be due
to the presence of TiO in the upper atmospheres of the most strongly irradiated
hot Jupiters.Comment: 10 pages, submitted to Ap
Hyaluronidase Hyal1 Increases Tumor Cell Proliferation and Motility through Accelerated Vesicle Trafficking
Background: Hyal1 is a turnover enzyme for hyaluronan that accelerates metastatic cancer by increasing cell motility.
Results: Hyal1-overexpressing cells have a higher rate of endocytosis that impacts cargo internalization and recycling.
Conclusion: The higher rate of vesicle trafficking increases motility receptor function and nutrient uptake.
Significance: This novel mechanism implicates Hyal1 trafficking in multiple signaling events during tumor progression
Recommended from our members
The Inner-Shelf Dynamics Experiment
17 USC 105 interim-entered record; under review.The article of record as published may be found at http://dx.doi.org/10.1175/BAMS-D-19-0281.1The inner shelf, the transition zone between the surfzone and the midshelf, is a dynamically complex region with the evolution of circulation and stratification driven by multiple physical processes. Cross-shelf exchange through the inner shelf has important implications for coastal water quality, ecological connectivity, and lateral movement of sediment and heat. The Inner-Shelf Dynamics Experiment (ISDE) was an intensive, coordinated, multi-institution field experiment from September–October 2017, conducted from the midshelf, through the inner shelf, and into the surfzone near Point Sal, California. Satellite, airborne, shore- and ship-based remote sensing, in-water moorings and ship-based sampling, and numerical ocean circulation models forced by winds, waves, and tides were used to investigate the dynamics governing the circulation and transport in the inner shelf and the role of coastline variability on regional circulation dynamics. Here, the following physical processes are highlighted: internal wave dynamics from the midshelf to the inner shelf; flow separation and eddy shedding off Point Sal; offshore ejection of surfzone waters from rip currents; and wind-driven subtidal circulation dynamics. The extensive dataset from ISDE allows for unprecedented investigations into the role of physical processes in creating spatial heterogeneity, and nonlinear interactions between various inner-shelf physical processes. Overall, the highly spatially and temporally resolved oceanographic measurements and numerical simulations of ISDE provide a central framework for studies exploring this complex and fascinating region of the ocean.U.S. Office of Naval Research (ONR)ONR Departmental Research Initiative (DRI)Inner-Shelf Dynamics Experiment (ISDE
Development and validation of a targeted gene sequencing panel for application to disparate cancers
Next generation sequencing has revolutionised genomic studies of cancer, having facilitated the development of precision oncology treatments based on a tumour’s molecular profile. We aimed to develop a targeted gene sequencing panel for application to disparate cancer types with particular focus on tumours of the head and neck, plus test for utility in liquid biopsy. The final panel designed through Roche/Nimblegen combined 451 cancer-associated genes (2.01 Mb target region). 136 patient DNA samples were collected for performance and application testing. Panel sensitivity and precision were measured using well-characterised DNA controls (n = 47), and specificity by Sanger sequencing of the Aryl Hydrocarbon Receptor Interacting Protein (AIP) gene in 89 patients. Assessment of liquid biopsy application employed a pool of synthetic circulating tumour DNA (ctDNA). Library preparation and sequencing were conducted on Illumina-based platforms prior to analysis with our accredited (ISO15189) bioinformatics pipeline. We achieved a mean coverage of 395x, with sensitivity and specificity of >99% and precision of >97%. Liquid biopsy revealed detection to 1.25% variant allele frequency. Application to head and neck tumours/cancers resulted in detection of mutations aligned to published databases. In conclusion, we have developed an analytically-validated panel for application to cancers of disparate types with utility in liquid biopsy
An overview of the first 5 years of the ENIGMA obsessive-compulsive disorder working group: The power of worldwide collaboration
Neuroimaging has played an important part in advancing our understanding of the neurobiology of obsessive-compulsive disorder (OCD). At the same time, neuroimaging studies of OCD have had notable limitations, including reliance on relatively small samples. International collaborative efforts to increase statistical power by combining samples from across sites have been bolstered by the ENIGMA consortium; this provides specific technical expertise for conducting multi-site analyses, as well as access to a collaborative community of neuroimaging scientists. In this article, we outline the background to, development of, and initial findings from ENIGMA's OCD working group, which currently consists of 47 samples from 34 institutes in 15 countries on 5 continents, with a total sample of 2,323 OCD patients and 2,325 healthy controls. Initial work has focused on studies of cortical thickness and subcortical volumes, structural connectivity, and brain lateralization in children, adolescents and adults with OCD, also including the study on the commonalities and distinctions across different neurodevelopment disorders. Additional work is ongoing, employing machine learning techniques. Findings to date have contributed to the development of neurobiological models of OCD, have provided an important model of global scientific collaboration, and have had a number of clinical implications. Importantly, our work has shed new light on questions about whether structural and functional alterations found in OCD reflect neurodevelopmental changes, effects of the disease process, or medication impacts. We conclude with a summary of ongoing work by ENIGMA-OCD, and a consideration of future directions for neuroimaging research on OCD within and beyond ENIGMA
Cardiac biomarkers in pediatric cardiomyopathy: Study design and recruitment results from the Pediatric Cardiomyopathy Registry
Background:
Cardiomyopathies are a rare cause of pediatric heart disease, but they are one of the leading causes of heart failure admissions, sudden death, and need for heart transplant in childhood. Reports from the Pediatric Cardiomyopathy Registry (PCMR) have shown that almost 40% of children presenting with symptomatic cardiomyopathy either die or undergo heart transplant within 2 years of presentation. Little is known regarding circulating biomarkers as predictors of outcome in pediatric cardiomyopathy.
Study Design:
The Cardiac Biomarkers in Pediatric Cardiomyopathy (PCM Biomarkers) study is a multi-center prospective study conducted by the PCMR investigators to identify serum biomarkers for predicting outcome in children with dilated cardiomyopathy (DCM) and hypertrophic cardiomyopathy (HCM). Patients less than 21 years of age with either DCM or HCM were eligible. Those with DCM were enrolled into cohorts based on time from cardiomyopathy diagnosis: categorized as new onset or chronic. Clinical endpoints included sudden death and progressive heart failure.
Results:
There were 288 children diagnosed at a mean age of 7.2±6.3 years who enrolled in the PCM Biomarkers Study at a median time from diagnosis to enrollment of 1.9 years. There were 80 children enrolled in the new onset DCM cohort, defined as diagnosis at or 12 months prior to enrollment. The median age at diagnosis for the new onset DCM was 1.7 years and median time from diagnosis to enrollment was 0.1 years. There were 141 children enrolled with either chronic DCM or chronic HCM, defined as children ≥2 years from diagnosis to enrollment. Among children with chronic cardiomyopathy, median age at diagnosis was 3.4 years and median time from diagnosis to enrollment was 4.8 years.
Conclusion:
The PCM Biomarkers study is evaluating the predictive value of serum biomarkers to aid in the prognosis and management of children with DCM and HCM. The results will provide valuable information where data are lacking in children.
Clinical Trial Registration: NCT01873976
https://clinicaltrials.gov/ct2/show/NCT01873976?term=PCM+Biomarker&rank=
- …