916 research outputs found

    Real-time Automated Metrics for Virtual Bone Drilling

    Get PDF

    Aromatase expression is increased in BRCA1 mutation carriers

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Until recently, the molecular mechanisms explaining increased incidence of ovarian and breast cancers in carriers of <it>BRCA1 </it>gene mutations had not been clearly understood. Of significance is the finding that BRCA1 negatively regulates aromatase expression <it>in vitro</it>. Our objective was to characterise aromatase gene <it>(CYP19A1) </it>and its promoter expression in breast adipose and ovarian tissue in <it>BRCA1 </it>mutation carriers and unaffected controls.</p> <p>Methods</p> <p>We measured aromatase transcripts, total and promoter-specific (PII, PI.3, PI.4) in prophylactic oophorectomy or mastectomy, therapeutic mastectomy, ovarian and breast tissue from unaffected women.</p> <p>Results</p> <p>We demonstrate that the lack of functional BRCA1 protein correlates to higher aromatase levels in 85% of <it>BRCA1 </it>mutation carriers. This increase is mediated by aberrant transcriptional regulation of aromatase; in breast adipose by increases in promoter II/I.3 and I.4-specific transcripts; and in the ovary with elevation in promoter I.3 and II-specific transcripts.</p> <p>Conclusion</p> <p>Understanding the link between BRCA1 and aromatase is significant in terms of understanding why carcinogenesis is restricted to estrogen-producing tissues in <it>BRCA1 </it>mutation carriers.</p

    Breast cancer prognosis predicted by nuclear receptor-coregulator networks

    Get PDF
    Although molecular signatures based on transcript expression in breast cancer samples have provided new insights into breast cancer classification and prognosis, there are acknowledged limitations in current signatures. To provide rational, pathway-based signatures of disrupted physiology in cancer tissues that may be relevant to prognosis, this study has directly quantitated changed gene expression, between normal breast and cancer tissue, as a basis for signature development. The nuclear receptor (NR) family of transcription factors, and their coregulators, are fundamental regulators of every aspect of metazoan life, and were rigorously quantified in normal breast tissues and ERα positive and ERα negative breast cancers. Coregulator expression was highly correlated with that of selected NR in normal breast, particularly from postmenopausal women. These associations were markedly decreased in breast cancer, and the expression of the majority of coregulators was down-regulated in cancer tissues compared with normal. While in cancer the loss of NR-coregulator associations observed in normal breast was common, a small number of NR (Rev-ERBβ, GR, NOR1, LRH-1 and PGR) acquired new associations with coregulators in cancer tissues. Elevated expression of these NR in cancers was associated with poorer outcome in large clinical cohorts, as well as suggesting the activation of ERα -related, but ERα-independent, pathways in ERα negative cancers. In addition, the combined expression of small numbers of NR and coregulators in breast cancer was identified as a signature predicting outcome in ERα negative breast cancer patients, not linked to proliferation and with predictive power superior to existing signatures containing many more genes. These findings highlight the power of predictive signatures derived from the quantitative determination of altered gene expression between normal breast and breast cancers. Taken together, the findings of this study identify networks of NR-coregulator associations active in normal breast but disrupted in breast cancer, and moreover provide evidence that signatures based on NR networks disrupted in cancer can provide important prognostic information in breast cancer patients

    Genetic association of CDC2 with cerebrospinal fluid tau in Alzheimer's disease

    Get PDF
    We have recently reported that a polymorphism in the cell division cycle (CDC2) gene, designated Ex6 + 7I/D, is associated with Alzheimer's disease (AD). The CDC2 gene is located on chromosome 10q21.1 close to the marker D10S1225 linked to AD. Active cdc2 accumulates in neurons containing neurofibrillary tangles (NFT), a process that can precede the formation of NFT. Therefore, CDC2 is a promising candidate susceptibility gene for AD. We investigated the possible effects of the CDC2 polymorphism on cerebrospinal fluid (CSF) biomarkers in AD patients. CDC2 genotypes were evaluated in relation to CSF protein levels of total tau, phospho-tau and beta-amyloid (1-42) in AD patients and control individuals, and in relation to the amount of senile plaques and NFT in the frontal cortex and in the hippocampus in patients with autopsy-proven AD and controls. The CDC2 Ex6 + 7I allele was associated with a gene dose-dependent increase of CSF total tau levels (F-2,F- 626 = 7.0, p = 0.001) and the homozygous CDC2Ex6 +7II genotype was significantly more frequent among AD patients compared to controls (p = 0.006, OR = 1.57, 95% CI 1.13-2.17). Our results provide further evidence for an involvement of cdc2 in the pathogenesis of AD. Copyright (C) 2005 S. Karger AG, Basel

    A somatic-mutational process recurrently duplicates germline susceptibility loci and tissue-specific super-enhancers in breast cancers

    Get PDF
    Somatic rearrangements contribute to the mutagenized landscape of cancer genomes. Here, we systematically interrogated rearrangements in 560 breast cancers by using a piecewise constant fitting approach. We identified 33 hotspots of large (>100 kb) tandem duplications, a mutational signature associated with homologous-recombination-repair deficiency. Notably, these tandem-duplication hotspots were enriched in breast cancer germline susceptibility loci (odds ratio (OR) = 4.28) and breast-specific 'super-enhancer' regulatory elements (OR = 3.54). These hotspots may b

    A somatic-mutational process recurrently duplicates germline susceptibility loci and tissue-specific super-enhancers in breast cancers

    Get PDF
    Somatic rearrangements contribute to the mutagenized landscape of cancer genomes. Here, we systematically interrogated rearrangements in 560 breast cancers by using a piecewise constant fitting approach. We identified 33 hotspots of large (>100 kb) tandem duplications, a mutational signature associated with homologous-recombination-repair deficiency. Notably, these tandem-duplication hotspots were enriched in breast cancer germline susceptibility loci (odds ratio (OR) = 4.28) and breast-specific 'super-enhancer' regulatory elements (OR = 3.54). These hotspots may be sites of selective susceptibility to double-strand-break damage due to high transcriptional activity or, through incrementally increasing copy number, may be sites of secondary selective pressure. The transcriptomic consequences ranged from strong individual oncogene effects to weak but quantifiable multigene expression effects. We thus present a somatic-rearrangement mutational process affecting coding sequences and noncoding regulatory elements and contributing a continuum of driver consequences, from modest to strong effects, thereby supporting a polygenic model of cancer development.DG is supported by the EU-FP7-SUPPRESSTEM project. SN-Z is funded by a Wellcome Trust Intermediate Fellowship (WT100183MA) and is a Wellcome Beit Fellow. For more information, please visit the publisher's website

    Behind the Red Curtain: Environmental Concerns and the End of Communism

    Full text link

    Insights into hominid evolution from the gorilla genome sequence.

    Get PDF
    Gorillas are humans' closest living relatives after chimpanzees, and are of comparable importance for the study of human origins and evolution. Here we present the assembly and analysis of a genome sequence for the western lowland gorilla, and compare the whole genomes of all extant great ape genera. We propose a synthesis of genetic and fossil evidence consistent with placing the human-chimpanzee and human-chimpanzee-gorilla speciation events at approximately 6 and 10 million years ago. In 30% of the genome, gorilla is closer to human or chimpanzee than the latter are to each other; this is rarer around coding genes, indicating pervasive selection throughout great ape evolution, and has functional consequences in gene expression. A comparison of protein coding genes reveals approximately 500 genes showing accelerated evolution on each of the gorilla, human and chimpanzee lineages, and evidence for parallel acceleration, particularly of genes involved in hearing. We also compare the western and eastern gorilla species, estimating an average sequence divergence time 1.75 million years ago, but with evidence for more recent genetic exchange and a population bottleneck in the eastern species. The use of the genome sequence in these and future analyses will promote a deeper understanding of great ape biology and evolution

    A search for an unexpected asymmetry in the production of e+μ− and e−μ+ pairs in proton-proton collisions recorded by the ATLAS detector at root s = 13 TeV

    Get PDF
    This search, a type not previously performed at ATLAS, uses a comparison of the production cross sections for e(+)mu(-) and e(-)mu(+) pairs to constrain physics processes beyond the Standard Model. It uses 139 fb(-1) of proton-proton collision data recorded at root s = 13 TeV at the LHC. Targeting sources of new physics which prefer final states containing e(+)mu(-) and e(-)mu(+), the search contains two broad signal regions which are used to provide model-independent constraints on the ratio of cross sections at the 2% level. The search also has two special selections targeting supersymmetric models and leptoquark signatures. Observations using one of these selections are able to exclude, at 95% confidence level, singly produced smuons with masses up to 640 GeV in a model in which the only other light sparticle is a neutralino when the R-parity-violating coupling lambda(23)(1)' is close to unity. Observations using the other selection exclude scalar leptoquarks with masses below 1880 GeV when g(1R)(eu) = g(1R)(mu c) = 1, at 95% confidence level. The limit on the coupling reduces to g(1R)(eu) = g(1R)(mu c) = 0.46 for a mass of 1420 GeV
    corecore