63 research outputs found

    Gas morphology and energetics at the surface of PDRs: new insights with Herschel observations of NGC 7023

    Get PDF
    We investigate the physics and chemistry of the gas and dust in dense photon-dominated regions (PDRs), along with their dependence on the illuminating UV field. Using Herschel-HIFI observations, we study the gas energetics in NGC 7023 in relation to the morphology of this nebula. NGC 7023 is the prototype of a PDR illuminated by a B2V star and is one of the key targets of Herschel. Our approach consists in determining the energetics of the region by combining the information carried by the mid-IR spectrum (extinction by classical grains, emission from very small dust particles) with that of the main gas coolant lines. In this letter, we discuss more specifically the intensity and line profile of the 158 micron (1901 GHz) [CII] line measured by HIFI and provide information on the emitting gas. We show that both the [CII] emission and the mid-IR emission from polycyclic aromatic hydrocarbons (PAHs) arise from the regions located in the transition zone between atomic and molecular gas. Using the Meudon PDR code and a simple transfer model, we find good agreement between the calculated and observed [CII] intensities. HIFI observations of NGC 7023 provide the opportunity to constrain the energetics at the surface of PDRs. Future work will include analysis of the main coolant line [OI] and use of a new PDR model that includes PAH-related species.Comment: Accepted for publication in Astronomy and Astrophysics Letters (Herschel HIFI special issue), 5 pages, 5 figure

    The origin of the [C II] emission in the S140 PDRs - new insights from HIFI

    Get PDF
    Using Herschel's HIFI instrument we have observed [C II] along a cut through S140 and high-J transitions of CO and HCO+ at two positions on the cut, corresponding to the externally irradiated ionization front and the embedded massive star forming core IRS1. The HIFI data were combined with available ground-based observations and modeled using the KOSMA-tau model for photon dominated regions. Here we derive the physical conditions in S140 and in particular the origin of [C II] emission around IRS1. We identify three distinct regions of [C II] emission from the cut, one close to the embedded source IRS1, one associated with the ionization front and one further into the cloud. The line emission can be understood in terms of a clumpy model of photon-dominated regions. At the position of IRS1, we identify at least two distinct components contributing to the [C II] emission, one of them a small, hot component, which can possibly be identified with the irradiated outflow walls. This is consistent with the fact that the [C II] peak at IRS1 coincides with shocked H2 emission at the edges of the outflow cavity. We note that previously available observations of IRS1 can be well reproduced by a single-component KOSMA-tau model. Thus it is HIFI's unprecedented spatial and spectral resolution, as well as its sensitivity which has allowed us to uncover an additional hot gas component in the S140 region.Comment: accepted for publication in Astronomy and Astrophysics (HIFI special issue

    Expression of glypican-4 in haematopoietic-progenitor and bone-marrow-stromal cells.

    No full text
    Heparan sulphate proteoglycans and the extracellular matrix of bone-marrow-stromal cells are important components of the microenvironment of haematopoietic tissues and are involved in the interaction of haematopoietic stem and stromal cells. Previous studies have emphasized the role of heparan sulphate proteoglycan synthesis by bone-marrow-stromal cells. In the present study we describe the expression of glypican-4 (GPC-4), belonging to the glypican family, in bone-marrow-stromal cells and haematopoietic-progenitor cells of human and murine origin. Expression of GPC-4 was shown on the mRNA-level by reverse transcription-PCR and Northern blot analysis. Amplification products were cloned and sequenced, to confirm these results. To analyze the expression of GPC-4 on the protein level, polyclonal antibodies against selected peptides were raised in rabbits. Western blot analysis showed expression of GPC-4 as a heparan sulphate proteoglycan in the human haematopoietic-progenitor cell line TF-1 and normal human bone marrow. These results were confirmed by FACS analysis of TF-1 cells. Furthermore, GPC-4-positive progenitor cells and stromal cells were enriched from normal human bone marrow by magnetic-cell sorting and analysed by confocal laser-scanning microscopy

    Proteoglycan synthesis in human and murine haematopoietic progenitor cell lines: isolation and characterization of a heparan sulphate proteoglycan as a major proteoglycan from the human haematopoietic cell line TF-1.

    No full text
    Proteoglycans of bone-marrow stromal cells and their extracellular matrix are important components of the microenvironment of haematopoietic tissues. Proteoglycans might also be involved in the interaction of haematopoietic stem and stromal cells. Recently, several studies have been reported on the proteoglycan synthesis of stromal cells, but little is known about the proteoglycan synthesis of haematopoietic stem or progenitor cells. Here we report on the isolation and characterization of proteoglycans from two haematopoietic progenitor cell lines, the murine FDCP-Mix A4 and the human TF-1 cell line. Proteoglycans were isolated from metabolically labelled cells and purified by several chromatographic steps, including anion-exchange and size-exclusion chromatography. Biochemical characterization was performed by electrophoresis or gel-filtration chromatography before and after digestion with glycosaminoglycan-specific enzymes or HNO2 treatment. Whereas FDCP-Mix A4 cells synthesize a homogeneous chondroitin 4-sulphate proteoglycan, isolation and characterization of proteoglycans from the human cell line TF-1 revealed, that TF-1 cells synthesize, in addition to a chondroitin sulphate proteoglycan, a heparan sulphate proteoglycan as major proteoglycan. For this heparan sulphate proteoglycan a core protein size of approx. 59 kDa was determined. Immunochemical analysis of this heparan sulphate proteoglycan revealed that it is not related to the syndecan family nor to glypican
    corecore