5,090 research outputs found
Mean Field Theory of the Morphology Transition in Stochastic Diffusion Limited Growth
We propose a mean-field model for describing the averaged properties of a
class of stochastic diffusion-limited growth systems. We then show that this
model exhibits a morphology transition from a dense-branching structure with a
convex envelope to a dendritic one with an overall concave morphology. We have
also constructed an order parameter which describes the transition
quantitatively. The transition is shown to be continuous, which can be verified
by noting the non-existence of any hysteresis.Comment: 16 pages, 5 figure
Front Stability in Mean Field Models of Diffusion Limited Growth
We present calculations of the stability of planar fronts in two mean field
models of diffusion limited growth. The steady state solution for the front can
exist for a continuous family of velocities, we show that the selected velocity
is given by marginal stability theory. We find that naive mean field theory has
no instability to transverse perturbations, while a threshold mean field theory
has such a Mullins-Sekerka instability. These results place on firm theoretical
ground the observed lack of the dendritic morphology in naive mean field theory
and its presence in threshold models. The existence of a Mullins-Sekerka
instability is related to the behavior of the mean field theories in the
zero-undercooling limit.Comment: 26 pp. revtex, 7 uuencoded ps figures. submitted to PR
Development of FTK architecture: a fast hardware track trigger for the ATLAS detector
The Fast Tracker (FTK) is a proposed upgrade to the ATLAS trigger system that
will operate at full Level-1 output rates and provide high quality tracks
reconstructed over the entire detector by the start of processing in Level-2.
FTK solves the combinatorial challenge inherent to tracking by exploiting the
massive parallelism of Associative Memories (AM) that can compare inner
detector hits to millions of pre-calculated patterns simultaneously. The
tracking problem within matched patterns is further simplified by using
pre-computed linearized fitting constants and leveraging fast DSP's in modern
commercial FPGA's. Overall, FTK is able to compute the helix parameters for all
tracks in an event and apply quality cuts in approximately one millisecond. By
employing a pipelined architecture, FTK is able to continuously operate at
Level-1 rates without deadtime. The system design is defined and studied using
ATLAS full simulation. Reconstruction quality is evaluated for single muon
events with zero pileup, as well as WH events at the LHC design luminosity. FTK
results are compared with the tracking capability of an offline algorithm.Comment: To be published in the proceedings of DPF-2009, Detroit, MI, July
2009, eConf C09072
The Evolution of FTK, a Real-Time Tracker for Hadron Collider Experiments
We describe the architecture evolution of the highly-parallel dedicated
processor FTK, which is driven by the simulation of LHC events at high
luminosity (1034 cm-2 s-1). FTK is able to provide precise on-line track
reconstruction for future hadronic collider experiments. The processor,
organized in a two-tiered pipelined architecture, execute very fast algorithms
based on the use of a large bank of pre-stored patterns of trajectory points
(first tier) in combination with full resolution track fitting to refine
pattern recognition and to determine off-line quality track parameters. We
describe here how the high luminosity simulation results have produced a new
organization of the hardware inside the FTK processor core.Comment: 11th ICATPP conferenc
The design and performance of the ATLAS Inner Detector trigger for Run 2 LHC Collisions at √s=13 TeV
Recommended from our members
A proposal to study hard hadron - hadron collisions
We propose a novel technique to study hadron-hadron collisions in which a significant fraction of the available energy is carried off in directions transverse to the beam. The technique is independent of the details of the final state so is ideally suited to searching for the jet-like particle clusters predicted by the parton model. The detector consists of a small calorimeter and several planes of 1 meter square proportional chambers
Determination of the Jet Energy Scale at the Collider Detector at Fermilab
A precise determination of the energy scale of jets at the Collider Detector
at Fermilab at the Tevatron collider is described. Jets are used in
many analyses to estimate the energies of partons resulting from the underlying
physics process. Several correction factors are developed to estimate the
original parton energy from the observed jet energy in the calorimeter. The jet
energy response is compared between data and Monte Carlo simulation for various
physics processes, and systematic uncertainties on the jet energy scale are
determined. For jets with transverse momenta above 50 GeV the jet energy scale
is determined with a 3% systematic uncertainty
Recommended from our members
Preliminary Observation of High Transverse Momentum Particle Production at NAL
Search for charged Higgs decays of the top quark using hadronic tau decays
We present the result of a search for charged Higgs decays of the top quark,
produced in collisions at 1.8 TeV. When the charged
Higgs is heavy and decays to a tau lepton, which subsequently decays
hadronically, the resulting events have a unique signature: large missing
transverse energy and the low-charged-multiplicity tau. Data collected in the
period 1992-1993 at the Collider Detector at Fermilab, corresponding to
18.70.7~pb, exclude new regions of combined top quark and charged
Higgs mass, in extensions to the standard model with two Higgs doublets.Comment: uuencoded, gzipped tar file of LaTeX and 6 Postscript figures; 11 pp;
submitted to Phys. Rev.
Precision Top-Quark Mass Measurements at CDF
We present a precision measurement of the top-quark mass using the full
sample of Tevatron TeV proton-antiproton collisions collected
by the CDF II detector, corresponding to an integrated luminosity of 8.7
. Using a sample of candidate events decaying into the
lepton+jets channel, we obtain distributions of the top-quark masses and the
invariant mass of two jets from the boson decays from data. We then compare
these distributions to templates derived from signal and background samples to
extract the top-quark mass and the energy scale of the calorimeter jets with
{\it in situ} calibration. The likelihood fit of the templates from signal and
background events to the data yields the single most-precise measurement of the
top-quark mass, \mtop = 172.85 \pm\pmComment: submitted to Phys. Rev. Let
- …