235 research outputs found

    Power-Law Time Distribution of Large Earthquakes

    Full text link
    We study the statistical properties of time distribution of seimicity in California by means of a new method of analysis, the Diffusion Entropy. We find that the distribution of time intervals between a large earthquake (the main shock of a given seismic sequence) and the next one does not obey Poisson statistics, as assumed by the current models. We prove that this distribution is an inverse power law with an exponent μ=2.06±0.01\mu=2.06 \pm 0.01. We propose the Long-Range model, reproducing the main properties of the diffusion entropy and describing the seismic triggering mechanisms induced by large earthquakes.Comment: 4 pages, 3 figures. Revised version accepted for publication. Typos corrected, more detailed discussion on the method used, refs added. Phys. Rev. Lett. (2003) in pres

    A journey to client and therapist mutuality in person-centered psychotherapy: a case study

    Get PDF
    This aim of this case study was to build theory on the development of client–therapist mutuality in person-centered psychotherapy. A case study focusing on a 42-year-old female client who had presented for therapy following trauma within interpersonal relationships has been used. A reflective, theory-building, case study method was adopted that used data gathered from verbatim session notes and research interviews between the therapist (first author) and research supervisor (second author). Three primary therapeutic processes that contributed to the development of mutuality are discussed. First, the development of mutual empathy in the relationship; second, strategies for disconnection and staying out of relationship are identified. Third, client agency and mutuality is explored. In conclusion the study proposes that mutuality is a key construct within person-centered psychotherapy and develops as a natural consequence of the presence of Rogers’ therapeutic conditions

    The driver landscape of sporadic chordoma.

    Get PDF
    Chordoma is a malignant, often incurable bone tumour showing notochordal differentiation. Here, we defined the somatic driver landscape of 104 cases of sporadic chordoma. We reveal somatic duplications of the notochordal transcription factor brachyury (T) in up to 27% of cases. These variants recapitulate the rearrangement architecture of the pathogenic germline duplications of T that underlie familial chordoma. In addition, we find potentially clinically actionable PI3K signalling mutations in 16% of cases. Intriguingly, one of the most frequently altered genes, mutated exclusively by inactivating mutation, was LYST (10%), which may represent a novel cancer gene in chordoma.Chordoma is a rare often incurable malignant bone tumour. Here, the authors investigate driver mutations of sporadic chordoma in 104 cases, revealing duplications in notochordal transcription factor brachyury (T), PI3K signalling mutations, and mutations in LYST, a potential novel cancer gene in chordoma

    Recurrent mutation of IGF signalling genes and distinct patterns of genomic rearrangement in osteosarcoma

    Get PDF
    Osteosarcoma is a primary malignancy of bone that affects children and adults. Here, we present the largest sequencing study of osteosarcoma to date, comprising 112 childhood and adult tumours encompassing all major histological subtypes. A key finding of our study is the identification of mutations in insulin-like growth factor (IGF) signalling genes in 8/112 (7%) of cases. We validate this observation using fluorescence in situ hybridization (FISH) in an additional 87 osteosarcomas, with IGF1 receptor (IGF1R) amplification observed in 14% of tumours. These findings may inform patient selection in future trials of IGF1R inhibitors in osteosarcoma. Analysing patterns of mutation, we identify distinct rearrangement profiles including a process characterized by chromothripsis and amplification. This process operates recurrently at discrete genomic regions and generates driver mutations. It may represent an age-independent mutational mechanism that contributes to the development of osteosarcoma in children and adults alike

    Comparison of microfluidic digital PCR and conventional quantitative PCR for measuring copy number variation

    Get PDF
    One of the benefits of Digital PCR (dPCR) is the potential for unparalleled precision enabling smaller fold change measurements. An example of an assessment that could benefit from such improved precision is the measurement of tumour-associated copy number variation (CNV) in the cell free DNA (cfDNA) fraction of patient blood plasma. To investigate the potential precision of dPCR and compare it with the established technique of quantitative PCR (qPCR), we used breast cancer cell lines to investigate HER2 gene amplification and modelled a range of different CNVs. We showed that, with equal experimental replication, dPCR could measure a smaller CNV than qPCR. As dPCR precision is directly dependent upon both the number of replicate measurements and the template concentration, we also developed a method to assist the design of dPCR experiments for measuring CNV. Using an existing model (based on Poisson and binomial distributions) to derive an expression for the variance inherent in dPCR, we produced a power calculation to define the experimental size required to reliably detect a given fold change at a given template concentration. This work will facilitate any future translation of dPCR to key diagnostic applications, such as cancer diagnostics and analysis of cfDNA

    Clonal hematopoiesis and therapy-related myeloid neoplasms following neuroblastoma treatment.

    Get PDF
    Therapy-related myeloid neoplasms (TMN) constitute one of the most challengingcomplications of cancer treatment.1 Whilst understanding of TMN pathogenesis remains fragmentary, genomic studies in adults have thus far refuted the notion that TMN simply result from cytotoxin-induced DNA damage.2–4 Analysis of the preclinical evolution of a limited number of adult TMN have retraced the majority of cases to clonal haematopoiesis (CH) that predates cytotoxic treatment and lacks the mutational footprint of genotoxic therapies.2–6 Balanced translocations, generally attributed to treatment with topoisomerase II inhibitors, are implicated in a minority of TMN.1 TMN is a leading cause of premature death in childhood cancer survivors, and affects 7-11% of children treated for high-risk neuroblastoma and sarcoma.7,8 However, the origin of pediatric TMN remains unclear. Targeted sequencing of known cancer genes detects CH in ~4% of children following cytotoxic treatment,6,9 whereas CH is vanishingly rare in young individuals in the general population.10,11 Moreover, to our knowledge, no cases of childhood TMN have been retraced to pretreatment CH. In light of these observations, we asked whether a broader driver landscape had eluded targeted CH screens in pediatric cancer patients and/or whether therapy-induced mutagenesis may be an under-recognised catalyst of CH and TMN in this patient group

    DNA methylation signature is prognostic of choroid plexus tumor aggressiveness

    Get PDF
    Abstract: Background: Histological grading of choroid plexus tumors (CPTs) remains the best prognostic tool to distinguish between aggressive choroid plexus carcinoma (CPC) and the more benign choroid plexus papilloma (CPP) or atypical choroid plexus papilloma (aCPP); however, these distinctions can be challenging. Standard treatment of CPC is very aggressive and often leads to severe damage to the young child’s brain. Therefore, it is crucial to distinguish between CPC and less aggressive entities (CPP or aCPP) to avoid unnecessary exposure of the young patient to neurotoxic therapy. To better stratify CPTs, we utilized DNA methylation (DNAm) to identify prognostic epigenetic biomarkers for CPCs. Methods: We obtained DNA methylation profiles of 34 CPTs using the HumanMethylation450 BeadChip from Illumina, and the data was analyzed using the Illumina Genome Studio analysis software. Validation of differentially methylated CpG sites chosen as biomarkers was performed using pyrosequencing analysis on additional 22 CPTs. Sensitivity testing of the CPC DNAm signature was performed on a replication cohort of 61 CPT tumors obtained from Neuropathology, University Hospital Münster, Germany. Results: Generated genome-wide DNAm profiles of CPTs showed significant differences in DNAm between CPCs and the CPPs or aCPPs. The prediction of clinical outcome could be improved by combining the DNAm profile with the mutational status of TP53. CPCs with homozygous TP53 mutations clustered as a group separate from those carrying a heterozygous TP53 mutation or CPCs with wild type TP53 (TP53-wt) and showed the worst survival outcome. Specific DNAm signatures for CPCs revealed AK1, PER2, and PLSCR4 as potential biomarkers for CPC that can be used to improve molecular stratification for diagnosis and treatment. Conclusions: We demonstrate that combining specific DNAm signature for CPCs with histological approaches better differentiate aggressive tumors from those that are not life threatening. These findings have important implications for future prognostic risk prediction in clinical disease management

    The driver landscape of sporadic chordoma

    Get PDF
    Chordoma is a malignant, often incurable bone tumour showing notochordal differentiation. Here, we defined the somatic driver landscape of 104 cases of sporadic chordoma. We reveal somatic duplications of the notochordal transcription factor brachyury (T) in up to 27% of cases. These variants recapitulate the rearrangement architecture of the pathogenic germline duplications of T that underlie familial chordoma. In addition, we find potentially clinically actionable PI3K signalling mutations in 16% of cases. Intriguingly, one of the most frequently altered genes, mutated exclusively by inactivating mutation, was LYST (10%), which may represent a novel cancer gene in chordoma
    corecore