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Abstract

Background: Histological grading of choroid plexus tumors (CPTs) remains the best prognostic tool to distinguish
between aggressive choroid plexus carcinoma (CPC) and the more benign choroid plexus papilloma (CPP) or atypical
choroid plexus papilloma (@CPP); however, these distinctions can be challenging. Standard treatment of CPC is very
aggressive and often leads to severe damage to the young child’s brain. Therefore, it is crucial to distinguish between
CPC and less aggressive entities (CPP or aCPP) to avoid unnecessary exposure of the young patient to neurotoxic
therapy. To better stratify CPTs, we utilized DNA methylation (DNAm) to identify prognostic epigenetic biomarkers
for CPCs.

Methods: We obtained DNA methylation profiles of 34 CPTs using the HumanMethylation450 BeadChip from Illumina,
and the data was analyzed using the lllumina Genome Studio analysis software. Validation of differentially methylated
CpG sites chosen as biomarkers was performed using pyrosequencing analysis on additional 22 CPTs. Sensitivity testing
of the CPC DNAm signature was performed on a replication cohort of 61 CPT tumors obtained from Neuropathology,
University Hospital MUnster, Germany.

Results: Generated genome-wide DNAm profiles of CPTs showed significant differences in DNAm between CPCs and
the CPPs or aCPPs. The prediction of clinical outcome could be improved by combining the DNAmM profile with the
mutational status of TP53. CPCs with homozygous TP53 mutations clustered as a group separate from those carrying

a heterozygous TP53 mutation or CPCs with wild type TP53 (TP53-wt) and showed the worst survival outcome. Specific
DNAm signatures for CPCs revealed AKT, PER2, and PLSCR4 as potential biomarkers for CPC that can be used to
improve molecular stratification for diagnosis and treatment.

Conclusions: We demonstrate that combining specific DNAm signature for CPCs with histological approaches better
differentiate aggressive tumors from those that are not life threatening. These findings have important implications for
future prognostic risk prediction in clinical disease management.
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Introduction

Choroid plexus tumors (CPTs) are rare neoplasms of the
central nervous system. Within this family of tumors,
choroid plexus carcinoma (CPC) is a malignant neoplasm,
categorized as a grade III tumor by the World Health
Organization (WHO). In contrast, choroid plexus papil-
loma (CPP) is benign and classified as a grade I tumor,
while atypical choroid plexus papilloma (aCPP) is a grade
II tumor [1]. CPTs account for 0.4—0.6% of all brain
tumors; however, in children, CPTs represent 1 to 4% of all
childhood brain tumors, with up to 20% occurring during
the first year of life [1]. CPCs account for 20-40% of all
choroid plexus tumors in children [1].

Distinction between these tumor subtypes for accurate
diagnosis is essential but can be challenging. Current diag-
nosis relies on assessment of histopathological features, i.e.,
mitotic activity, cellularity, and nuclear pleomorphism as
well as the presence of necrosis and blurring of the papillary
growth pattern [2]. Although overall long-term survival for
CPPs is relatively favorable (85-100%) after surgical
resection alone, CPCs are significantly more aggressive,
with a greater tendency for recurrence and less than 50% of
patients survive even in the context of combined surgery,
chemo- and radiation therapy [3—6]. Most of these children
are younger than 3years of age, and the long-term dam-
aging effects of this therapy on growth and the developing
brain are of immense concern, highlighting the need for
better biologic risk stratification for tumors in these young
patients.

Over 50% of CPC tumors carry somatic mutations in the
TP53 tumor suppressor gene, and 7P53 mutant CPCs have
been associated with increased genome instability and poor
prognosis [7]. Germline TP53 mutations have also been
observed in ~ 50% of children with CPC which is now con-
sidered a component tumor of Li-Fraumeni syndrome
(LES) [8]. We have previously reported that CPTs are
highly unstable and harbor unique patterns of chromo-
some-wide gains and losses [9]. In fact, we demonstrated
that differences in copy number (CN) and gene expression
distinguish CPCs from CPPs and aCPPs. Nevertheless, des-
pite the use of similar treatment protocols for all patients
with CPC, clinical outcomes vary, and our previous find-
ings demonstrate that the clinical variability may be driven
by molecular heterogeneity of CPCs.

To improve outcome prediction, more accurate molecu-
lar distinction among CPTs is needed. The power of
DNAm to identify novel, more molecularly defined tumor
subtypes has been established and led to improved stratifi-
cation and specific tailoring of therapy for patients with a
wide range of cancers [10—12]. Recently, Thomas et al.
identified three clinically distinct subgroups of choroid
plexus tumors by array-based DNAm profiling; however,
the methylation groups did not entirely recapitulate the
three different histologically defined WHO entities [13].
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Based on these observations and our previously reported
work, we performed a detailed analysis of the genome-wide
methylation profile in our cohort of CPTs with the goal of
determining a more accurate classification of the CPT
subtypes.

In this study, we performed a comprehensive analysis of
DNAm in CPTs and discovered a highly sensitive and
specific DNAm signature for CPCs which is able to segre-
gate CPC from other CPT tumors as well as other brain
tumors. This signature includes AK1, PER2, and PLSCR4
as prospective diagnostic biomarkers for CPC and poten-
tially tractable therapeutic targets.

Methods

Patients, tissues, and sample preparation

Institutional Research Ethics Board approval was obtained
for the study. Clinical data and tumor samples were
collected from many sources, including two large pediatric
neuro-oncology centers: the Hospital for Sick Children
(SickKids), Toronto, Ontario, and the Children’s Hospital
of Los Angeles (CHLA), Los Angeles, CA. The other con-
tributing centers were as follows: St. Jude Children’s Re-
search Hospital, Memphis, TN; the Collaborative Human
Tissue Network (CHTN) in Columbus, OH; Schneider
Children’s Medical Center, Tel-Aviv, Israel; Montreal
Children’s Hospital, Montreal, Quebec; and University of
Colorado Health Sciences Center, Denver, CO. Informed
consent was obtained from the parents/legal guardians of
all patients. Pathologic review of CPTs was conducted by
Dr. C. Hawkins. In all other institutions, expert neuropa-
thologists critically examined each case. All samples were
processed as described in detail in our previous work [9].
DNA was isolated from either fresh snap frozen (n =53)
or formalin-fixed paraffin-embedded (FFPE; # = 2) or opti-
mal cutting temperature (OCT) compound (#n=1) tumor
samples. Tumor DNA was extracted using standard phe-
nol—chloroform extraction from fresh frozen samples and
the RecoverAll Total Nucleic Acid Isolation Kit for FFPE
(Ambion) from FFPE samples.

Our primary cohort comprised 34 samples, includ-
ing 15 CPPs, 5 aCPPs, and 14 CPCs. An additional
validation cohort comprised 22 samples, including 4
CPPs, 3aCPPs, and 15 CPCs. We also used a replica-
tion cohort of 61 CPTs from Neuropathology, Univer-
sity Hospital Miinster, Germany, for sensitivity testing
of the CPC-specific DNAm signature [13]. Patient
characteristics are provided in Additional file 1: Tables
S1 and S2.

TP53 gene sequencing

Sequencing of the coding region of TP53 (exons 2-11 as
well as up to 50 bases into spanning introns of the TP53
gene) was performed in the molecular diagnostic labora-
tory at The Hospital for Sick Children in Toronto by
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direct Sanger sequencing of genomic DNA as previously
described [7].

DNA methylation

Genomic DNA (~ 1 pg) from CPT patients (Additional file
1: Table S1) was treated using sodium bisulfite (Qiagen)
converting unmethylated cytosine to uracil but leaving
methylated cytosine intact. These samples were then
hybridized to the HumanMethylation450 BeadChip from
[lumina at the Centre for Applied Genomics (TCAG) at
the Hospital for Sick Children using the manufacturer’s
recommended protocol. Genome-wide DNAm profiles for
all 34 primary samples are available through Gene Expres-
sion Omnibus (GEO: http://www.ncbi.nlm.nih.gov/geo/),
accession number GSE61044.

Genome-wide DNA methylation analysis

The data generated from the HumanMethylation450 Bead-
Chip arrays were analyzed using the Illumina Genome
Studio analysis software and included normalization,
quality control measurements, and background correction.
We removed probes targeting the X or Y chromosomes,
probes near polymorphic sites (targeting CpGs within 5pb
of SNPs that have >1% minor allele frequency in 1000
Genome Project), internal control probes, and non-specific
cross-reactive probes [14]. This filtering process resulted in
the retention of 414319 CpG methylation sites for further
analysis. For each CpG site, the DNAm level was expressed
as the average percentage of methylated cytosines, known
as the beta value (5 = mC/(mC + C)). Mapping of CpG sites
to regulatory genomic regions was done using the Illumina
annotation.

To determine the sites that are differentially methyl-
ated between the carcinoma and papilloma groups, we
used a non-parametric Mann—-Whitney U test at each
CpG probe. For all subsequent investigations except the
biomarker discovery, we applied the statistical signifi-
cance level at a p value < 0.05 (after FDR correction) and
an additional cutoff of at least 30% average methylation
difference (Af3) between the groups.

For biomarker discovery, more stringent criteria were
used, with a p value <0.001 and average methylation dif-
ference AB >40%. Data were visualized in Qlucore Omics
Explorer 3.3 and Partek Genomics Suite 6.6 software using
heatmaps and principal component analysis (PCA) plots.

All differentially methylated genes identified in this
study were analyzed using Ingenuity Pathway Analysis
(IPA) software to identify pathways that are involved in
the etiology of the carcinomas.

Predictive modeling of the CPC-specific signature
Predictive analysis was performed using the Weka ma-
chine learning suite (www.cs.waikato.ac.nz/ml/weka) and

Page 3 of 16

R package caret [15]. Predictive models were built using
CpGs as data attributes. To avoid overfitting, we used
options CfsSubsetEval—BestFirst to search for the most
predictive non-redundant subset of CpGs using the cor-
relation-based feature selection method. For the
purposes of predictive analysis, all 34 CPT data samples
were labeled as either “carcinoma” (CPC) or “papilloma”
(including CPP and aCPP). Leave-one-out (LOO) cross-
validation was applied where one sample was withheld; a
new epigenetic signature was identified, and a predictive
model was built on the remaining 33 samples and then
applied to the withheld sample to predict its status as
“carcinoma” or “papilloma.” Repeating this process for
each of the 34 CPTs gave the measure of the predictive
accuracy.

Multivariate factor analysis

Using 95 CPT samples of the combined datasets of the
34-sample discovery cohort and the 61-sample replication
cohort (35 CPC, 33 CPP, 27 aCPP), we performed multi-
variate factor analysis of the DNAm levels along with
other sample genotype and phenotype attributes to iden-
tify possible correspondence between them. Beta values in
each of the 59 signature CpGs were analyzed jointly with
attributes such as age, TP53 mutation status, recurrence
event status, and death event status (Additional file 1:
Table S3). See Additional file 3 for details.

Validation of differentially methylated CpG sites chosen
as biomarkers (pyrosequencing analysis)

Three genes were chosen as biomarkers that demonstrate
the greatest degree of segregation between CPCs and CPPs,
and the corresponding CpG sites were validated for differ-
ential methylation between these tumor groups using both
the initial discovery panel of 34 samples and a validation
set of 22 samples. Quantitative sodium bisulfite pyrose-
quencing was performed for AKI (cgl4578146), PER2
(cgl1903188), and PLSCR4 (cg07038342). All targeted
assays were designed using the PyroMark Assay Design
Software 1.0 (Qiagen). All primer sets are listed in
Additional file 1: Table S4. Sodium bisulfite-modified
genomic DNA was amplified using Hot-Start Taq Mas-
ter Mix (Qiagen) as previously described [16]. Regions
of interest were amplified by PCR, and pyrosequencing
was carried out using the PyroMark Q24 pyrosequen-
cer (Qiagen) according to the manufacturer’s protocol
(Pyro-Gold reagents). Output data were analyzed using
PyroMark Q24 1.0.10 Software (Qiagen), which calcu-
lates the methylation percentage [ for each CpG site,
allowing quantitative comparisons.

Survival analysis
Survival analysis was performed using the Kaplan—Meier
method, and curves were compared using both log-rank
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and Wilcoxon—Gehan chi-square tests. Overall survival
(OS) measured time from initial diagnosis to death from
any cause or last follow-up.

Results

Identification of methylation signature for CPCs and TP53
mutation groups in CPCs

Analysis of the genome-wide DNAm of primary CPTs
did not show significant differences between CPPs and
aCPPs (Mann—Whitney p value >0.55 after FDR
correction in all 485577 CpG probes) but there was a
significant difference in the CpG methylation profile
between CPCs and CPPs or aCPPs (Mann—Whitney p
value <0.048, FDR corrected in 51479 CpG sites).
Although there were no significant differences in gen-
ome-wide DNAm between CPPs and aCPPs, there was
a CPC-specific signature in comparison to CPP.

A volcano plot of the genome-wide DNAm profile re-
vealed a general shift towards higher DNAm levels (hyper-
methylation) in the CPCs as compared to the CPPs
(Additional file 2: Figure S1).

Using an average beta value difference of 0.3 or
greater and an FDR adjusted p value <0.05, we iden-
tified a total of 3361 CpG probes that showed signifi-
cant differences in methylation between CPCs and
CPPs. Among these 3361 CpGs, 1388 (or 41%) were
hypomethylated and the remaining 1973 CpG sites
(or 59%) were hypermethylated in CPCs compared to
CPPs. Two-way clustering performed using Pearson’s
correlation and average linkage for both the sample
tree and the gene tree revealed segregation between
the majority (86%) of CPCs and CPPs or aCPPs
(Fig. 1).

Since over 50% of CPC tumors carry somatic TP53
mutations, and 7P53 mutant CPCs have been associ-
ated with poor prognosis [7], we sought to determine
whether the clustering observed within the CPC group
correlated with 7P53 mutation status.

As shown in Fig. 1a, b, CPCs harboring homozygous
mutations in TP53 clustered as a group separate from
those carrying a heterozygous TP53 mutation or CPCs
with TP53-wt. Survival analysis performed on CPTs
(Fig. 2) showed significantly worse outcomes for methy-
lation group 1 and 2, which contained only CPC samples
(with mutated TP53 or TP53-wt), than for the methyla-
tion group 3 that contained predominantly CPPs or
aCPPs and had no death events. Methylation group 1
comprising only CPCs with homozygous TP53 mutation
had a particularly poor prognosis compared to methyla-
tion group 2 which contained CPCs with heterozygous
TP53 mutation or the TP53-wt (log-rank x*=16.7 with
df=2, p value 0.00023; and Wilcoxon-Gehan y*=15.5
with df = 2, p value 0.00043).
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Pathway and biological function analysis of differentially
methylated genes

To investigate whether genes affected by alterations of
DNAm in CPCs tend to fall within specific molecular
pathways, we next performed pathway analysis using In-
genuity Pathway Analysis (IPA) software on a 1328 gene
set overlapping the 3361 CpG probes. We identified nine
canonical pathways that were significantly enriched in
CPCs (FDR corrected p value < 0.05, with between 14 and
29 differentially methylated genes in each pathway) in
comparison to CPPs (Fig. 3a). As shown in Fig. 3a, the
most significantly affected pathway was GABA receptor
signaling where 14 genes showed differential methylation
between CPCs and CPPs or aCPPs. We observed hypome-
thylation in the body of GABA(A) receptor subunits alpha
4-5 and gamma 3, as well as hypermethylation in the pro-
moter region of subunit gamma 2 in CPCs compared to
CPPs (Additional file 1: Table S5).

IPA Biological Function analysis revealed 54 functional
categories that were significantly altered (FDR corrected
p value <0.05) in CPCs. The most significantly enriched
categories in CPCs (with p values below 0.001 and
including between 94 and 408 differentially methylated
genes) were associated with cellular development, cellu-
lar growth and proliferation, cancer, cell death and sur-
vival, and cellular assembly and organization (Fig. 3b).

Genomic enrichment of the CPC DNA methylation
signature

In order to identify regulatory regions that are enriched
in the CPC DNAm signature, we used the Illumina an-
notation for regulatory regions and compared the 3361
sites with significant differential DNAm in CPCs against
the full Illumina 450K array dataset. We identified sig-
nificant enrichment of CpG sites associated with CPCs
in enhancer regions, DNase I hypersensitive sites (DHS)
(which are associated with open chromatin and hence
active transcription), cancer-specific differentially meth-
ylated regions (cDMR), reprogrammed-specific differen-
tially methylated regions (rDMR), and non-CpG island
sites. However, we did not find any enrichment at CpG
island shores and shelves (Additional file 2: Figure S2).

Correlation between DNA methylation and gene
expression

To assess the impact of differential methylation on gene
expression, we examined the 3361 CpG sites in a dataset
of 40 CPTs analyzed previously using Affymetrix Exonl
microarrays [9]. We identified 26 samples from this study
that had expression profiling data available; of those, we
had 11 CPCs, 12 CPPs, and 4 aCPPs. Differential expres-
sion between CPCs and CPPs was determined at the
significance level with FDR corrected p value < 0.05. We
identified 57 single genes showing correlation between
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Fig. 1 Two-way clustering performed on 34 CPT samples using Pearson’s correlation and average linkage (@) and PCA (b, ¢) using the top 3361
most differentially methylated CpGs (p < 0.05 after FDR correction and at least 30% methylation difference) shows segregation between majority of
carcinomas (cpc) and papillomas (cpp and acpp). In addition, we observed segregation within the CPC group based on TP53 status. Homozygous
violet bar (a) and outlined in pink box (a, b); heterozygous TP53-mut = orange bar (@) and outlined in blue box (a, b); TP53-wt
green bar (a) and green dots (b); diagnosis: acpp = pink, cpc =red, and cpp = turquoise (a-c). The numbers

1,2,and 3 in PCA plots

methylation and expression levels in CPCs, suggesting an
epigenetic regulation of gene expression for these import-
ant genes in CPCs. Namely, 32 genes displayed differential
methylation in their promoter region (comprising the re-
gion 1500 bp upstream of the transcription start site
(TSS), the 5'UTR region, and the first exon), which was
inversely correlated with their expression in CPCs (Fig. 4a
and Additional file 1: Table S6). Meanwhile, 25 genes
demonstrated differential methylation of probes within
the gene body, which was positively correlated with their
expression (Fig. 4b and Additional file 1: Table S7).

CPC-specific DNA methylation signature

We further increased the differential methylation strin-
gency (p value <0.001 after FDR correction and A > 0.4
by magnitude), which allowed us to extract 59 high-con-
fidence differentially methylated CpG sites encompass-
ing 33 candidate genes (Fig. 5 and Additional file 1:
Table S8).

We chose CpG sites representing 3 genes (AKI—ad-
enylate kinase, PER2—period circadian clock 2, and
PLSCR4—phospholipid scramblase 4) for the validation
of their differentially methylated status by targeted
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Fig. 2 Kaplan-Meier (KM) curve depicting overall survival (OS) estimates of patients with CPT by methylation subgroups. Statistical values comparing

the three KM curves were obtained with the log-rank chi-square = 16.7 (df = 2), p value 0.0002; and Wilcoxon-Gehan chi-square = 15.5 (df = 2), p value
0.00043. Group 1 (pink highlight in top panel, red line in KM plot (n = 5)), CPCs with homozygous TP53-mut (mutant) = violet bar; group 2 (blue highlight
in top panel, blue line in KM plot (n =7)), CPCs with heterozygous TP53-mut = orange bar and TP53-wt (wild type) = green bar; group 3 (orange highlight
in top panel, orange line in KM plot (n = 22)), CPPs-heterozygous TP53-mut = orange bar and TP53-wt = green bar and two CPCs with TP53-wt = green

bar; diagnosis: cpc = red, acpp = pink, cpp = turquoise

quantitative pyrosequencing. The selection was based on
satisfying the following criteria: (1) CpG sites methylated
in the promoter region, (2) inverse correlation between
methylation and expression, and (3) known biological as-
sociation with cancer. Results obtained by pyrosequenc-
ing using the discovery subset of 34 CPT tumors as well
as the validation subset of 22 CPT samples are presented
in Additional file 2: Figure S3. For all three genes, bisul-
fite pyrosequencing validated the findings from the
methylation array analysis and confirmed that the
methylation at the tested CpG sites was higher in CPCs
than in CPPs. In addition, we visualized DNAm profile
of the 3 biomarker CpGs, obtained from the initial dis-
covery subset of 34 CPTs using the HumanMethyla-
tion450 array and from the validation subset of 22
CPTs using pyrosequencing. We found that these 3
biomarkers were sufficient to segregate CPCs from the
CPPs or aCPPs, proving them to be a highly specific
minimal CPC DNAm signature (Additional file 2:
Figure S4).

Direct comparison of the BeadChip and pyrose-
quencing values for the 34 cases for which data were
available from both methods revealed a high correl-
ation between the two methodologies, with r* between
0.90 and 0.99. Correlation plots for each tested CpG
are shown in Additional file 2: Figure S5.

Accuracy measurement of CPC DNA methylation
signature
We applied several types of machine learning models to
the DNAm profiles of 14 CPC samples and 20 CPP or
aCPP samples. Our goal was to predict the CPT status
of a sample using the methylation values in signature
CpGs as data attributes. Leave-one-out (LOO) cross-val-
idation was used to determine the predictive accuracy.
First, we used only three CpGs as data attributes repre-
senting the minimal signature genes: AKI (cgl4578146),
PER2 (cg11903188), and PLSCR#4 (cg07038342). Even with
this minimal data representation, several predictive model
types, such as logistic regression, multilayer perceptron
neural network, and Naive Bayes model, were able to
predict carcinoma status on all left-out samples with per-
fect accuracy (area under ROC = 100% in each case). The
logistic regression model showed that cg11903188 (gene
PER2) was the most predictive of the three, with an odds
ratio =7.33, followed by ¢g07038342 (PLSCR4, odds
ratio = 3.03) and ¢g14578146 (AKI, odds ratio = 1.20).
Next, we explored the predictive accuracy and robust-
ness of the full epigenetic signature using LOO cross-
validation. A full new epigenetic signature was identified
for each of the 34 cross-validation folds using the same
parameters (p value <0.001 after FDR correction and
AB > 0.4 by magnitude). This signature was then used to
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regression, support vector machines, and random
forests, to detect carcinoma cases. In all such results, we
achieved perfect 100% specificity, i.e., no false positives.

build predictive models of several types, both without
feature selection (i.e., using all CpGs as data attributes)
and with feature selection to optimize model accuracy

by using only the most predictive non-redundant CpGs.
We applied several types of machine learning models
available through the R package caret, such as logistic

However, the carcinoma sample CPC146-T was persist-
ently misclassified by all models and occasionally the
models also failed to detect another sample CPC153-T,
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thereby giving a sensitivity estimate between 85.7 and
92.9% (1 or 2 false positives out of 14 CPC samples).
These observations match well with the results shown in
Fig. 1 where the same two CPC samples are clustered
within the papilloma group. Overall, our estimates of a per-
fect specificity and a high sensitivity suggest a good poten-
tial of the CPC-derived DNAm signature in predicting
carcinomas.

Testing the specificity of CPC DNA methylation signature
using external datasets

To further validate the specificity of the CPC biomarker
signature, we extracted publicly available pediatric brain
tumor DNAm datasets from the GEO database as well
as from the TCGA (The Cancer Genome Atlas) Data
Portal (http://portal.gdc.cancer.gov/) of adult origin and
analyzed them jointly with our CPT methylation data.
The brain tumor DNAm datasets derived from the Illu-
mina HumanMethylation450 array consisted of 28 dif-
fuse intrinsic pontine gliomas (DIPG) (GSE50022) and

67 pilocytic astrocytomas (GSE44684), 12 embryonal tu-
mors with multilayered rosettes (ETMR) and 28 primi-
tive neuroectodermal tumors (PNET) (GSE52556) from
GEO, and 24 glioma and 30 low grade glioma (LGG) from
TCGA. The extracted data were combined with our CPT
data, all samples were restricted to the CpGs comprising
the CPC-specific signature, and hierarchical clustering
was used to examine the separation of CPTs from other
brain tumors (Fig. 6). The heatmap of hierarchical cluster-
ing shows distinct DNAm patterns for CPCs. In addition,
CPCs segregate from the majority of the other brain tu-
mors, further confirming the high specificity of the CPC
DNAm signature (Fig. 6).

Testing the sensitivity of the CPC DNA methylation
signature using a replication cohort of CPT tumors
We applied the CPC-specific DNAm signature to a cohort
of CPTs derived from a recently published study [13]. This
cohort consisted of 21CPCs, 22aCPPs, and 18CPPs. Using
this replication dataset, CPCs clustered together and
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Fig. 5 CPC specific DNA methylation signature of 34 CPT samples Heatmap (a) and PCA (b) of 59 differentially methylated CpG sites encompassing 33
candidate genes extracted from the dataset of 3361 CpG sites by applying increased stringency (p < 0.001 and at least 0.4 delta beta). Hierarchical
clustering was done using Euclidean metric. High methylation = yellow; low methylation = blue; TP53 status: wild type = green, mutated = orange;
diagnosis: cpc = red, acpp = pink, cpp = turquoise. The numbers 1, 2, and 3 in PCA plot represent component 1, component 2, and component 3.
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separate from CPPs. This indicates high sensitivity for the
CPC-specific DNAm signature in properly assigning the
histopathological profile to CPTs (Fig. 7a). Only two CPPs
(CPP80g and CPP36g) clustered with the CPC; interest-
ingly, the histopathological report for CPP36g showed that
this specific CPP has increased cellularity, blurring of the
papillary growth pattern, but no mitotic activity, no tumor
necrosis, and no nuclear pleomorphism, features not com-
monly associated with CPP histopathology. This data sug-
gests that the CPC-specific DNAm signature can be more
specific in classifying subgroups of CPT tumors based on
their methylation profiles compared to histopathological
classification.

Furthermore, we wanted to check the sensitivity of our
CPC-specific DNAm signature in classifying aCPPs from
the replication cohort. The first methylation cluster
includes most of the CPPs (cluster 1) and some aCPPs as
expected. The second cluster is divided into two subclus-
ters (cluster 2A and 2B) where one is enriched in mostly
CPCs (2B) and the other one (2A) includes a histologically
defined mix of CPCs, CPPs, and aCPPs (Fig. 7b).

Hierarchical clustering performed separately for each his-
tologically defined group of CPPs (Additional file 2: Figure
S6A) and aCPPs (Additional file 2: Figure S6B) from the
replication cohort is able to clearly distinguish a subset
within each of the CPP and aCPP groups based on their
DNAm profiles, although histologically they were all classi-
fied as either CPP or aCPP. Next, we combined samples
from two cohorts (34 samples initially used in the discov-
ery of the CPC specific DNAm signature and 61 samples
from the replication cohort) to generate a DNAm profile
based on the CPC-specific signature (Fig. 8a). Using heat-
map combined with hierarchical clustering, the data shows
that CPT samples are grouped into two main clusters
(clusterl and 2) but cluster 2 is divided into two subgroups
(2A and 2B). The distribution of histologically defined
CPCs, CPPs, and aCPPs is similar as described above when
only a replication cohort of 61 samples was used (Fig. 7b).
Based on the distribution of 95 histologically defined CPC,
CPP, and aCPP samples within molecularly defined clus-
ters, we also looked at the frequency of either death or re-
currence events. The frequency of a death event (Fig. 8b) is
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Fig. 6 Heatmap of brain tumor DNA methylation datasets from GEO and TCGA databases with CPC-specific DNA methylation signature
(59 differentially methylated CpG sites). Comparison of CPC-specific DNA methylation signature to other brain tumors. Brain tumor data
were derived from GEO database under accession number GSE50022—for diffuse intrinsic pontine glioma (DIPG) (n = 28), GSE44684—from
pilocytic astrocytoma (PA) n=61-PA and n =6 normal cerebellum (CTRL)), and GSE52556—from embryonal tumors with multilayered
rosettes (ETMR) (n = 12), primitive neuroectodermal tumors (PNET) (n = 28), normal brain (CTRL) (n=34), and TCGA-glioma (n=24) and low
grade glioma (LGG) (n=30) from TCGA. CPTs diagnosis: cpc =red, acpp = pink, cpp = turquoise. Hierarchical clustering was done using
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very different in each of the molecularly defined groups. In
group 1, the frequency of a death event is 0%, whereas it is
30% in group 2B and only 7% in group 2A. The frequency
of recurrence is 5% in group 1, (Fig. 8c) 61% in group 2B,
and only 17% in group 2A. Frequency of either event is
extremely high in group 2B, extremely low in group 1, and
significantly reduced in group 2A. Chances of surviving in
group 2A are 4 times higher than in group 2B. When
estimating either death or recurrence events assessed on
histologically defined CPTs, the death event was 28.1% in
CPCs and 0% in CPPs or aCPPs (Fig. 8d) whereas the fre-
quency of recurrence was 12.9% lower than projected
based on DNAm clusters (Fig. 8e). DNA methylation-
based disease risk assessment was significantly improved
compared to the frequency of death event assessed on

histologically defined CPTs. Seven percent (CPP =3,
aCPP =8, CPC=5) of patients could be classified with
more favorable outcome compared to 0% when using
histopathological criteria alone (Fig. 8d), while the recur-
rence frequency measured by current criteria was underes-
timated (Fig. 8e) when compared to frequency assessment
based on specific DNAm signature for CPCs. Interestingly,
factor analysis revealed that the CPC-specific DNAm sig-
nature forms an independent group of data, quite distinct
from the available phenotype, genotype, or clinical attri-
butes (Additional file 2: Figures S7 and S8). See Additional
file 3 for details. We tested the methylation profiling classi-
fier [12] (Heidelberg classifier at https://www.molecular-
neuropathology.org) on all samples from cluster 1, 2A, and
2B in Fig. 8 to compare to the CPC-specific DNAm
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A = adults, P = pediatric cases, U= unknown

Fig. 7 DNA methylation profile derived from the replication dataset of CPTs after applying CPC specific DNA methylation signature (59 differentially
methylated CpG sites). a DNA methylation profile of 39 CPT samples (18 CPPs and 21 CPCs). b DNA methylation profile of 61 CPT samples. Hierarchical
clustering was done using Euclidean metric. High methylation = yellow; low methylation = blue; diagnosis: cpc = red; acpp = pink; cpp = turquoise; age:
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signature classification. The results are presented in Add-
itional file 1: Table S9. In our cluster 2A, we found 5 CPCs
which were classified by the Heidelberg classifier [12] as
pediatric B (methylation class closely related to methyla-
tion cluster 3 described in Thomas et al. [13]). These CPCs
represent a group of patients with much more favorable
outcome then predicted by the Heidelberg classifier. We
also found 3 CPPs and 2 aCPPs from our cluster 1 being
classified as pediatric B. Our classification performed better
than the Heidelberg classification given that a subset of
the CPCs/CPPs/aCPPs with favorable outcome was mixed
among the ones with the severe outcome.

Discussion

We generated a genome-wide DNAm profile in CPTs to
address our hypothesis that epigenetic alterations would be
associated with specific phenotypes. We undertook a de-
tailed approach to define the differences in DNAm

signature for different groups of CPTs as one of the epi-
genetic factors responsible for CPC development and
progression.

We showed significant genome-wide hypermethylation
in CPCs compared to either CPPs or aCPPs, but no dif-
ference between CPPs and aCPPs. This could be in part
due to the fact that we had a smaller number of aCPP
cases. A total of 3361 differentially methylated probes
showed segregation between the majority of CPCs and
CPPs or aCPPs, thus distinguishing the aggressive form
of CPTs, that is, CPCs from benign CPTs (CPPs or
aCPPs). Unsupervised hierarchical clustering revealed
two main clusters within CPCs based on TP53 mutation
status. CPCs with homozygous TP53 mutations segre-
gated from CPCs with heterozygous TP53 mutations or
CPCs with TP53-wt and showed significantly worse sur-
vival outcome compared to CPPs and aCPPs or CPCs
with heterozygous TP53 mutations or TP53-wt. This is
consistent with our previous observation of the worst
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Fig. 8 (See legend on next page.)
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CPT samples or for each of the histologically defined CPTs (e)

Fig. 8 DNA methylation profile derived from the combined discovery and replication datasets of CPTs after applying CPC specific DNA methylation
signature (59 differentially methylated CpG sites), Kaplan—Meier plots showing overall survival by methylation subgroups or by histological diagnosis
along with tables showing frequency of death event and histograms showing frequency of recurrence events within each of the DNA methylation
signature derived clusters as well as for each of the histologically defined CPTs. a DNA methylation clusters of the 95 CPT samples (combined datasets of
34 samples used in discovery cohort and 61 samples from replication cohort) defined by applying CPC-specific DNA methylation signature. Hierarchical
clustering was done using Euclidean metric. High methylation = yellow; low methylation = blue; diagnosis: cpc =red, acpp = pink, cpp = turquoise;
age: A = adults, P = pediatric cases, U = unknown. Kaplan—-Meier curves depicting overall survival (OS) estimates of patients with CPT by methylation
subgroups (b) or by histological diagnosis (d). Statistical values were obtained with the log-rank chi-square = 11.8 (df = 1), p value 0.0008, when
comparing patients grouped by methylation clusters and with the log-rank chi-square = 0.003495 (df = 2), p value 0.9529, when comparing patients
grouped by diagnosis. Histograms showing frequency of recurrence event in each of the clusters derived from DNA methylation signature (c) of 95

outcome for CPC tumors carrying homozygous TP53
mutations [9]. Some TP53-wt CPCs cluster within group
2 (together with heterozygous mutated 7P53) and in our
cohort one of the TP53-wt patients did not survive, but
two TP53-wt CPC patients cluster out of the CPC clus-
ters (1 or 2), with CPPs in cluster 3 showing excellent
survival. It is hard to predict, based on TP53 mutational
status alone, which CPC patient with TP53-wt would
have a better prognosis. By combining DNAm and 7P53
mutational status, we show that we can distinguish
between TP53-wt cases and predict the outcome.

Pathway analysis using IPA identified nine canonical
pathways with GABA receptor at the top of the list that
were significantly enriched in CPCs in comparison with
CPPs or aCPPs. GABA neurotransmitter in the mamma-
lian central nervous system (CNS) acts at either ionotropic
(GABA(A)Rs) or metabotropic (GABA(B)Rs) receptors.

Intriguingly, GABA has also emerged as a tumor sig-
naling molecule in the brain and periphery that controls
tumor cell proliferation [17, 18]. Recent studies indicate
that GABA and its receptors seem to play regulatory
effects in many kinds of cancers [19, 20]. Observations
that GABA(A) receptor levels change in different tumors
and tumor cell lines raise the possibility that manipulat-
ing GABA receptor activity might inhibit tumor growth
[21]. The GABA(A) receptor allosteric agonist Nembutal
has been shown experimentally to inhibit colon cancer
growth and metastasis [22]. GABA also plays a role in
synchronizing suprachiasmatic nucleus (SCN) neurons
[23], and recent evidence suggesting the presence of
rhythmic clock gene expression in rat choroid plexus
(CP) points to the possible involvement of CP in SCN
circadian information [24]. It is possible that deregulated
GABR(A) signaling in CPTs has an effect on the chor-
oidal autonomous clock or on synchronization signals/
circuits from the SCN neurons. Since the circuits are
critical for regulating physiology and behavior, as well as
the integration of metabolic information [25], distur-
bances in the communication between the body clocks
can desynchronize the circadian system, which is be-
lieved to contribute to the development of many diseases
including cancer [26].

In this study, we demonstrate that DNAm profiling can
distinguish aggressive forms of CPTs from benign forms
of CPTs. We have generated a CPC-specific DNAm signa-
ture which includes several important genes such as AKI,
PER2, and PLSCR4. This signature is highly specific when
compared to other brain tumors highlighting its potential
clinical diagnostic utility. When the CPC-specific signa-
ture was applied to a replication cohort of 39 samples (18
CPPs and 21 CPCs), CPCs were clustered together, separ-
ate from CPPs, but 2 histologically defined CPPs (CPP80g
and CPP36g) clustered with CPCs. Thus, we are able to
distinguish two distinct molecular subgroups, one com-
prised of a mixed population of histopathologically de-
fined samples with a majority of one histologically defined
subtype and one homogenous subgroup entirely com-
prised of CPPs.

Also, checking sensitivity of the CPC-specific DNAm
signature in classifying the aCPP in the replication cohort
of 61 samples (18 CPPs, 21 CPCs, and 22aCPPs), we
found that aCPPs are distributed across different molecu-
lar subgroups. These data strongly suggest that our CPC-
specific DNAm signature is more accurate in classifying
CPT tumors based on their methylation profiles compared
to histopathological classification alone and that the
WHO classification of the CPT based on CPP, aCPP, and
CPC can benefit from the addition of the molecular signa-
ture to provide a more accurate diagnosis that could im-
pact patient clinical management.

The CPC-specific DNAm signature we described here
comprised several genes including AKI, PER2, and
PLSCR4. Methylation of the CpG sites in the promoter
regions of these genes was more than 30% higher in CPC
than in CPPs or aCPPs. This was correlated with signifi-
cant downregulation at the mRNA level indicating that
the transcription of these genes is epigenetically regulated
in CPCs.

Emerging evidence has also revealed tight links between
the regulation of cellular metabolism [27] and the molecu-
lar clock and that the alteration of circadian rhythms
might lead to increased susceptibility to cancer in humans
[26, 28]. AK1 deficiency, which we observed in our previ-
ous study [9], is known to reduce metabolic signal
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reception by metabolic sensors, such as K-ATP channels
and AMP-activated protein kinase (AMPK), compromis-
ing their ability to withstand energetic stress [29, 30]. In
the context of a circadian clock, AMPK is essential for
maintaining metabolic homeostasis and preventing meta-
bolic disorders [31].

The mechanism of dysregulation of circadian genes in
cancers includes epigenetic silencing by promoter methy-
lation. We suggest that loss of circadian homeostasis
through circadian disruption may be a novel risk factor in
choroid plexus tumorigenesis. Decreased expression
through hypermethylation of CpG islands or aberrant
acetylation in the promoters of the core circadian genes
Perl1, Per2, and Per3 are reported in a spectrum of human
cancers [32]. More studies are needed to test the hypoth-
esis that loss of circadian homeostasis through circadian
disruption may be a potential risk factor in choroid plexus
tumorigenesis.

In our study, hypermethylation of CpG sites in the pro-
moter region of PER2 is correlated with significantly lower
expression of PER2 in CPCs compared to CPPs or aCPPs.
PERI and Cryptochrome-2 (CRY2) genes belonging to the
core clock family of genes showed significantly lower ex-
pression in CPCs as well [9].

PERI and PER2 genes are currently considered to be
true tumor suppressor genes, as decreased expression of
either (or both) has been reported in several types of hu-
man cancers [33—35] and has been shown to be an inde-
pendent predictor of poor prognosis in patients with
gastric cancer [36].

Downregulation of Per2 is correlated with increased
levels of Cyclin D and Cyclin E and accelerated tumor
growth in vivo [37] whereas induced overexpression of
either Perl or Per2 has been shown to inhibit the growth
of cancer cells and increase their apoptotic rate [38]. In
our previous study [9], we observed increased levels of
Cyclin A2 as well as Cyclin EI and E2 in CPCs compared
to CPPs or aCPPs further confirming a correlation be-
tween downregulation of PER2 and increased levels of
Cyclin A and Cyclin E as one of the factors involved in
CPCs tumorigenesis.

The findings generated from this study provide a frame-
work for improved molecular stratification for diagnosis
and treatment as well as the development of potential prog-
nostic markers to better differentiate aggressive CPT tu-
mors from those that are not life threatening. As well, some
of the markers might be predictors of response to particular
chemotherapeutic agents as previously reported [39].

Furthermore, our study confirms the relationship be-
tween the circadian clock, cancer, and DNAm at clock
genes and suggests that improper DNAm may alter clock
gene expression, contributing to the etiology of CPCs. The
distinct proliferation rhythm between tumor cells and
normal cells [40] provides an intriguing opportunity to
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maximize the effect of anticancer therapies in CPC based
on this circadian clock.

In conclusion, we discovered a highly sensitive and spe-
cific DNAm signature for CPCs which is able to segregate
CPC not only from other CPTs but also from other brain
tumors. However, the study is not able to differentiate the
proportion of the non-tumor cells. We demonstrate that
heterogeneity in the clinical outcome of CPT patients
cannot be predicted by histopathological assessment alone,
but implementation of the specific DNAm signature for
CPCs in association with the morphology of the CPT
tumor can significantly improve diagnosis. This signature
needs to be validated with larger sample numbers before
being used in the clinical setting; however, it shows its use-
fulness in identifying cases which would otherwise be
undertreated or perhaps some which would be overtreated.
The intention of making this signature accessible to the
scientific-medical community raises awareness of the
existence of this potentially more accurate classification.

Incorporation of CPC-specific DNAm signature into
existing survival prediction based solely on histopatho-
logical criteria can significantly improve the estimation
of disease outcome. Seven percent of patients could be
classified as lower risk compared to 0% when using
histopathological criteria alone, while the recurrence fre-
quency measured by current criteria was underestimated
when compared to frequency assessment based on spe-
cific DNAm signature for CPCs.

DNA methylation profiling enables the subclassification
of CPTs into 3 disease subgroups in routinely collected
material, and the integration of CPC-specific DNAm sig-
nature can significantly improve prognostic risk prediction
allowing for informed treatment decision, protecting some
young patients from devastating and permanent neuro-
logical impairment due to aggressive treatment.
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Additional file 1: Table S1. Patient information for samples used in
DNA methylation experiment. Table S2. Patient information for samples
in replication cohort used in sensitivity testing of the CPC DNA
methylation signature. Table S3. Multivariate factor analysis. Table S4.
Primer sets for quantitative sodium bisulfite pyrosequencing. Table S5.
GABA receptor DNA methylation status in CPTs. Table S6. Differentially
methylated genes in cpc vs cpp showing differential expression and
reverse correlation with DNA methylation in the promoter region of the
gene. Table S7. Differentially methylated genes in cpc vs cpp showing
differential expression and positive correlation with DNA methylation in
the body of the gene. Table S8. 39 variables (encompassing 33 single
genes) segregating CPCs and CPPs. Table S9. Comparison between
CPC-specific DNAm signature classification and the Heidelberg classifier.
(XLSX 108 kb)

Additional file 2: Figure S1. Volcano plot showing significantly
differentially methylated CpGs (yellow and blue) between CPCs
(carcinomas) and CPPs (papilomas). The X-axis shows the difference
between average DNAm levels in carcinomas and in papilomas, whereas
the Y-axis shows the significance as the Mann-Whitney U p value (on the
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logarithmic scale). Each point represents a CpG position from the lllumina
HumanMethylation450 BeadChip. CPC tumors show an overall
predominance of hypermethylation (yellow) compared with CPPs across
the signature CpGs, which were identified using the significance level

p <0.05 (or log10(p) > 1.30) and DNA methylation difference of at least
30%. Figure S2. Functional genomic distribution of CpG sites in CPCs.
Genomic enrichment of the CPC DNA methylation signature is presented
as percentage of all CpG sites on HumanMethylation450 BeadChip from
lllumina (green) or of CpG sites derived from differential analysis using
corrected Mann-Whitney U p value < 0.05 and at least 30% difference

in average beta between CPCs and CPPs (orange). Figure S3. BoxPlot
showing differential methylation of tested CpG sites between CPCs and
CPPs or aCPPs. (A) Ak1-cg14578146, (B) PER2-cg11903188, (C) PLSCR4-
€g07038342; the number of samples in discovery set was 34 and in
validation set 22; Y-axis shows average beta values and X-axis tumor
type: CPC = red, aCPP = pink, and CPP = turquoise. p value was
generated using two group comparison (t test) and represents
significance

of the difference in methylation between CPCs and CPPs or aCPPs.
***p < 0.001. Figure S4. CPC-specific minimal DNA methylation
signature. Heatmap (A) and PCA (B and C) of 3 differentially methylated
CpG sites encompassing 3 candidate genes from the dataset of 59 CpG
sites of CPC-specific signature. This minimal signature shows segregation
between CPCs and CPPs or aCPPs. Hierarchical clustering was done using
Euclidean metric. High methylation = yellow, low methylation = blue,
discovery set (lllumina HumanMethylation450 BeadChip) on 34 discovery
samples = orange, validation set (targeted quantitative sodium bisulfite
pyrosequencing) on 34 discovery, and 22 validation samples = green;
diagnosis: cpc = red, acpp = pink, and cpp = turquoise. The numbers 1, 2,
and 3 in PCA plots

represent component 1, component 2, and component 3. Figure S5.
Correlation plot of DNA methylation values (%) in 34 DNA samples for each
tested CpG obtained using the lllumina HumanMethylation450 BeadChip
and pyrosequencing. High correlation between the two methodologies
was observed with an 7 value of = 09; ’—Pearson’s correlation coefficient.
Figure S6. Hierarchical clustering of DNA methylation profile performed
separately for each histologically defined group of 18 CPPs (6A) and 22
aCPPs (6B) from replication cohort. Hierarchical clustering was done using
Euclidean metric. High methylation = yellow, low methylation = blue;
diagnosis: cpp = turquoise and acpp = pink. Figure S7. Factor analysis
of DNAm signature along with phenotype and genotype sample
attributes. The heatmap shows the magnitude of factor loadings for
n=12 factors in each of the data attribute. The DNAm beta values at
59 CpG sites contribute strongly to factors 1-3 and 6-12, for which
no other available data attributes contribute. Factor 4 is associated
with recurrence status, death status, and P53 mutation status, and
factor 5 with age. Several CpGs also show an association with these
phenotype attributes, but generally less so that with the DNAm-
related factors 1-3. Figure S8. Factor analysis of DNAm signature along
with phenotype and genotype sample attributes, with recurrence attribute
removed. The heatmap shows the magnitude of factor loadings for n =12
factors in each of the data attribute. Factor 4 is associated with age, and
factor 6 with death status and P53 mutation status. The DNAm beta values
at 59 CpG sites contribute strongly to the rest of the factors, with the
strongest association being in the top three factors. (DOCX 2180 kb)

Additional file 3: Multivariate factor analysis. (DOCX 16 kb)
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