9 research outputs found

    Japanese Encephalitis Virus in Meningitis Patients, Japan

    Get PDF
    Cerebrospinal fluid specimens from 57 patients diagnosed with meningitis were tested for Japanese encephalitis virus. Total RNA was extracted from the specimens and amplified. Two products had highest homology with Nakayama strain and 2 with Ishikawa strain. Results suggest that Japanese encephalitis virus causes some aseptic meningitis in Japan

    Paramyxovirus Sendai virus-like particle formation by expression of multiple viral proteins and acceleration of its release by C protein

    Get PDF
    AbstractEnvelope viruses maturate by macromolecule assembly and budding. To investigate these steps, we generated virus-like particles (VLPs) by co-expression of structural proteins of Sendai virus (SeV), a prototype of the family Paramyxoviridae. Simultaneous expression of matrix (M), nucleo- (N), fusion (F), and hemagglutinin-neuraminidase (HN) proteins resulted in the generation of VLPs that had morphology and density similar to those of authentic virus particles, although the efficiency of release from cells was significantly lower than that of the virus. By using this VLP formation as a model of virus budding, roles of individual proteins in budding were investigated. The M protein was a driving force of budding, and the F protein facilitated and the HN protein suppressed VLP release. Either of the glycoproteins, F or HN, as well as the N protein, significantly shifted density of VLPs to that of virus particles, suggesting that viral proteins bring about integrity of VLPs by protein–protein interactions. We further found that co-expression of a nonstructural protein, C, but not V, enhanced VLP release to a level comparable to that of virus particles, demonstrating that the C protein plays a role in virus budding

    The YLDL Sequence within Sendai Virus M Protein Is Critical for Budding of Virus-Like Particles and Interacts with Alix/AIP1 Independently of C Protein

    Get PDF
    For many enveloped viruses, cellular multivesicular body (MVB) sorting machinery has been reported to be utilized for efficient viral budding. Matrix and Gag proteins have been shown to contain one or two L-domain motifs (PPxY, PT/SAP, YPDL, and FPIV), some of which interact specifically with host cellular proteins involved in MVB sorting, which are recruited to the viral budding site. However, for many enveloped viruses, L-domain motifs have not yet been identified and the involvement of MVB sorting machinery in viral budding is still unknown. Here we show that both Sendai virus (SeV) matrix protein M and accessory protein C contribute to virus budding by physically interacting with Alix/AIP1. A YLDL sequence within the M protein showed L-domain activity, and its specific interaction with the N terminus of Alix/AIP1(1-211) was important for the budding of virus-like particles (VLPs) of M protein. In addition, M-VLP budding was inhibited by the overexpression of some deletion mutant forms of Alix/AIP1 and depletion of endogenous Alix/AIP1 with specific small interfering RNAs. The YLDL sequence was not replaceable by other L-domain motifs, such as PPxY and PT/SAP, and even YPxL. C protein was also able to physically interact with the N terminus of Alix/AIP1(212-357) and enhanced M-VLP budding independently of M-Alix/AIP1 interaction, although it was not released from the transfected cells itself. Our results suggest that the interaction of multiple viral proteins with Alix/AIP1 may enhance the efficiency of the utilization of cellular MVB sorting machinery for efficient SeV budding

    Extremely Low Genomic Diversity of Rickettsia japonica Distributed in Japan

    No full text
    Rickettsiae are obligate intracellular bacteria that have small genomes as a result of reductive evolution. Many Rickettsia species of the spotted fever group (SFG) cause tick-borne diseases known as “spotted fevers”. The life cycle of SFG rickettsiae is closely associated with that of the tick, which is generally thought to act as a bacterial vector and reservoir that maintains the bacterium through transstadial and transovarial transmission. Each SFG member is thought to have adapted to a specific tick species, thus restricting the bacterial distribution to a relatively limited geographic region. These unique features of SFG rickettsiae allow investigation of how the genomes of such biologically and ecologically specialized bacteria evolve after genome reduction and the types of population structures that are generated. Here, we performed a nationwide, high-resolution phylogenetic analysis of Rickettsia japonica, an etiological agent of Japanese spotted fever that is distributed in Japan and Korea. The comparison of complete or nearly complete sequences obtained from 31 R. japonica strains isolated from various sources in Japan over the past 30 years demonstrated an extremely low level of genomic diversity. In particular, only 34 single nucleotide polymorphisms were identified among the 27 strains of the major lineage containing all clinical isolates and tick isolates from the three tick species. Our data provide novel insights into the biology and genome evolution of R. japonica, including the possibilities of recent clonal expansion and a long generation time in nature due to the long dormant phase associated with tick life cycles.Citation: Akter A, Ooka T, Gotoh Y, Yamamoto S, Fujita H, Terasoma F, Kida K, Taira M, Nakadouzono F, Gokuden M, Hirano M, Miyashiro M, Inari K, Shimazu Y, Tabara K, Toyoda A, Yoshimura D, Itoh T, Kitano T, Sato MP, Katsura K, Mondal SI, Ogura Y, Ando S, Hayashi T. Extremely Low Genomic Diversity of Rickettsia japonica Distributed in Japan. Genome Biol Evol. 2017 Jan 1;9(1):124-133. doi: 10.1093/gbe/evw304. PMID: 28057731; PMCID: PMC5381555
    corecore