320 research outputs found
Faithful remote state preparation using finite classical bits and a non-maximally entangled state
We present many ensembles of states that can be remotely prepared by using
minimum classical bits from Alice to Bob and their previously shared entangled
state and prove that we have found all the ensembles in two-dimensional case.
Furthermore we show that any pure quantum state can be remotely and faithfully
prepared by using finite classical bits from Alice to Bob and their previously
shared nonmaximally entangled state though no faithful quantum teleportation
protocols can be achieved by using a nonmaximally entangled state.Comment: 6 page
Molecular scale contact line hydrodynamics of immiscible flows
From extensive molecular dynamics simulations on immiscible two-phase flows,
we find the relative slipping between the fluids and the solid wall everywhere
to follow the generalized Navier boundary condition, in which the amount of
slipping is proportional to the sum of tangential viscous stress and the
uncompensated Young stress. The latter arises from the deviation of the
fluid-fluid interface from its static configuration. We give a continuum
formulation of the immiscible flow hydrodynamics, comprising the generalized
Navier boundary condition, the Navier-Stokes equation, and the Cahn-Hilliard
interfacial free energy. Our hydrodynamic model yields interfacial and velocity
profiles matching those from the molecular dynamics simulations at the
molecular-scale vicinity of the contact line. In particular, the behavior at
high capillary numbers, leading to the breakup of the fluid-fluid interface, is
accurately predicted.Comment: 33 pages for text in preprint format, 10 pages for 10 figures with
captions, content changed in this resubmissio
When things matter: A survey on data-centric Internet of Things
With the recent advances in radio-frequency identification (RFID), low-cost wireless sensor devices, and Web technologies, the Internet of Things (IoT) approach has gained momentum in connecting everyday objects to the Internet and facilitating machine-to-human and machine-to-machine communication with the physical world. IoT offers the capability to connect and integrate both digital and physical entities, enabling a whole new class of applications and services, but several significant challenges need to be addressed before these applications and services can be fully realized. A fundamental challenge centers around managing IoT data, typically produced in dynamic and volatile environments, which is not only extremely large in scale and volume, but also noisy and continuous. This paper reviews the main techniques and state-of-the-art research efforts in IoT from data-centric perspectives, including data stream processing, data storage models, complex event processing, and searching in IoT. Open research issues for IoT data management are also discussed
Dynamic characteristics of sulfur, iron and phosphorus in coastal polluted sediments, north China
The cycling of sulfur (S), iron (Fe) and phosphorus (P) in sediments and pore water can impact the water quality of overlying water. In a heavily polluted river estuary (Yantai, China), vertical profiles of fluxes of dissolved sulfide, Fe2+ and dissolved reactive phosphorus (DRP) in sediment pore water were investigated by the Diffusive Gradients in Thin films technique (DGT). Vertical fluxes of S, Fe, P in intertidal sediment showed the availability of DRP increased while the sulfide decreased with depth in surface sediment, indicating that sulfide accumulation could enhance P release in anoxic sediment. In sites with contrasting salinity, the relative dominance of iron and sulfate reduction was different, with iron reduction dominant over sulfate reduction in the upper sediment at an intertidal site but the reverse true in a freshwater site, with the other process dominating at depth in each case. Phosphate release was largely controlled by iron reduction
Superconductivity in the two dimensional Hubbard Model.
Quasiparticle bands of the two-dimensional Hubbard model are calculated using
the Roth two-pole approximation to the one particle Green's function. Excellent
agreement is obtained with recent Monte Carlo calculations, including an
anomalous volume of the Fermi surface near half-filling, which can possibly be
explained in terms of a breakdown of Fermi liquid theory. The calculated bands
are very flat around the (pi,0) points of the Brillouin zone in agreement with
photoemission measurements of cuprate superconductors. With doping there is a
shift in spectral weight from the upper band to the lower band. The Roth method
is extended to deal with superconductivity within a four-pole approximation
allowing electron-hole mixing. It is shown that triplet p-wave pairing never
occurs. Singlet d_{x^2-y^2}-wave pairing is strongly favoured and optimal
doping occurs when the van Hove singularity, corresponding to the flat band
part, lies at the Fermi level. Nearest neighbour antiferromagnetic correlations
play an important role in flattening the bands near the Fermi level and in
favouring superconductivity. However the mechanism for superconductivity is a
local one, in contrast to spin fluctuation exchange models. For reasonable
values of the hopping parameter the transition temperature T_c is in the range
10-100K. The optimum doping delta_c lies between 0.14 and 0.25, depending on
the ratio U/t. The gap equation has a BCS-like form and (2*Delta_{max})/(kT_c)
~ 4.Comment: REVTeX, 35 pages, including 19 PostScript figures numbered 1a to 11.
Uses epsf.sty (included). Everything in uuencoded gz-compressed .tar file,
(self-unpacking, see header). Submitted to Phys. Rev. B (24-2-95
Theory of Kondo lattices and its application to high-temperature superconductivity and pseudo-gaps in cuprate oxides
A theory of Kondo lattices is developed for the t-J model on a square
lattice. The spin susceptibility is described in a form consistent with a
physical picture of Kondo lattices: Local spin fluctuations at different sites
interact with each other by a bare intersite exchange interaction, which is
mainly composed of two terms such as the superexchange interaction, which
arises from the virtual exchange of spin-channel pair excitations of electrons
across the Mott-Hubbard gap, and an exchange interaction arising from that of
Gutzwiller's quasi-particles. The bare exchange interaction is enhanced by
intersite spin fluctuations developed because of itself. The enhanced exchange
interaction is responsible for the development of superconducting fluctuations
as well as the Cooper pairing between Gutzwiller's quasi-particles. On the
basis of the microscopic theory, we develop a phenomenological theory of
low-temperature superconductivity and pseudo-gaps in the under-doped region as
well as high-temperature superconductivity in the optimal-doped region.
Anisotropic pseudo-gaps open mainly because of d\gamma-wave superconducting
low-energy fluctuations: Quasi-particle spectra around (\pm\pi/a,0) and
(0,\pm\pi/a), with a the lattice constant, or X points at the chemical
potential are swept away by strong inelastic scatterings, and quasi-particles
are well defined only around (\pm\pi/2a,\pm\pi/2a) on the Fermi surface or
line. As temperatures decrease in the vicinity of superconducting critical
temperatures, pseudo-gaps become smaller and the well-defined region is
extending toward X points. The condensation of d\gamma-wave Cooper pairs
eventually occurs at low enough temperatures when the pair breaking by
inelastic scatterings becomes small enough.Comment: 15 pages, 14 figure
A CsI(Tl) Scintillating Crystal Detector for the Studies of Low Energy Neutrino Interactions
Scintillating crystal detector may offer some potential advantages in the
low-energy, low-background experiments. A 500 kg CsI(Tl) detector to be placed
near the core of Nuclear Power Station II in Taiwan is being constructed for
the studies of electron-neutrino scatterings and other keV-MeV range neutrino
interactions. The motivations of this detector approach, the physics to be
addressed, the basic experimental design, and the characteristic performance of
prototype modules are described. The expected background channels and their
experimental handles are discussed.Comment: 34 pages, 11 figures, submitted to Nucl. Instrum. Method
Search for the Rare Decays J/Psi --> Ds- e+ nu_e, J/Psi --> D- e+ nu_e, and J/Psi --> D0bar e+ e-
We report on a search for the decays J/Psi --> Ds- e+ nu_e + c.c., J/Psi -->
D- e+ nu_e + c.c., and J/Psi --> D0bar e+ e- + c.c. in a sample of 5.8 * 10^7
J/Psi events collected with the BESII detector at the BEPC. No excess of signal
above background is observed, and 90% confidence level upper limits on the
branching fractions are set: B(J/Psi --> Ds- e+ nu_e + c.c.)<4.8*10^-5, B(J/Psi
--> D- e+ nu_e + c.c.) D0bar e+ e- + c.c.)<1.1*10^-5Comment: 10 pages, 4 figure
Direct Measurements of the Branching Fractions for and and Determinations of the Form Factors and
The absolute branching fractions for the decays and
are determined using singly
tagged sample from the data collected around 3.773 GeV with the
BES-II detector at the BEPC. In the system recoiling against the singly tagged
meson, events for and events for decays are observed. Those yield
the absolute branching fractions to be and . The
vector form factors are determined to be
and . The ratio of the two form
factors is measured to be .Comment: 6 pages, 5 figure
Study of J/psi decays to Lambda Lambdabar and Sigma0 Sigma0bar
The branching ratios and Angular distributions for J/psi decays to Lambda
Lambdabar and Sigma0 Sigma0bar are measured using BESII 58 million J/psi.Comment: 11 pages, 5 figure
- …