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Abstract

With the recent advances in radio-frequency identification (RFID), low-cost wireless sensor devices, and Web technologies, the

Internet of Things (IoT) approach has gained momentum in connecting everyday objects to the Internet and facilitating machine-

to-human and machine-to-machine communication with the physical world. IoT offers the capability to connect and integrate both

digital and physical entities, enabling a whole new class of applications and services, but several significant challenges need to be

addressed before these applications and services can be fully realized. A fundamental challenge centers around managing IoT data,

typically produced in dynamic and volatile environments, which is not only extremely large in scale and volume, but also noisy,

and continuous. This article reviews the main techniques and state-of-the-art research efforts in IoT from data-centric perspectives,

including data stream processing, data storage models, complex event processing, and searching in IoT. Open research issues for

IoT data management are also discussed.

Keywords: Internet of Things, Data Management, RFID Systems, Wireless Sensor Networks

1. Introduction

The Internet is a global system of networks that intercon-

nect computers using the standard Internet protocol suite. It

has significant impact on the world as it can serve billions of

users worldwide. Millions of private, public, academic, busi-

ness, and government networks, of local to global scope, all

contribute to the formation of the Internet. The traditional In-

ternet has a focus on computers and can be called the Internet

of Computers. In contrast, evolving from the Internet of Com-

puters, the Internet of Things (IoT) emphasizes things rather

than computers (Ashton, 2009). It aims to connect everyday ob-

jects, such as coats, shoes, watches, ovens, washing machines,

bikes, cars, even humans, plants, animals, and changing envi-

ronments, to the Internet to enable communication/interactions

between these objects. The ultimate goal of IoT is to enable

computers to see, hear and sense the real world. It is predicted

by Ericsson that the number of Internet-connected things will

reach 50 billion by 2020. Electronic devices and systems exist

around us providing different services to the people in different

situations: at home, at work, in their office, or driving a car on

the street. IoT also enables the close relationship between hu-

man and opportunistic connection of smart things (Guo et al.,

2013).

There are several definitions or visions of IoT from differ-

ent perspectives. From the viewpoint of services provided by

things, IoT means “a world where things can automatically

communicate to computers and each other providing services

to the benefit of the human kind” (CASAGRAS, 2000). From

the viewpoint of connectivity, IoT means “from anytime, any-

place connectivity for anyone, we will now have connectivity

Internet of Computers Internet of Things

Figure 1: Internet of Computers v.s. Internet of Things

for anything” (ITU, 2005). From the viewpoint of communi-

cation, IoT refers to “a world-wide network of interconnected

objects uniquely addressable, based on standard communica-

tion protocols” (INFSO, 2008). Finally, from the viewpoint of

networking, IoT is the Internet evolved “from a network of in-

terconnected computers to a network of interconnected objects”

(Commission, 2009).

We focus on our study of the Internet of Things from a data

perspective. As shown in Fig. 1, data is processed differently

in the Internet of Things and traditional Internet environments

(i.e., Internet of Computers). In the Internet of Computers, both

main data producers and consumers are human beings. How-

ever, in the Internet of Things, the main actors become things,
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Figure 2: Roadmap of this article

which means things are the majority of data producers and con-

sumers. Therefore, we give our definition of the Internet of

Things as follows:

“In the context of the Internet, addressable and intercon-

nected things, instead of humans, act as the main data pro-

ducers, as well as the main data consumers. Computers will

be able to learn and gain information and knowledge to solve

real world problems directly with the data fed from things. As

an ultimate goal, computers enabled by the Internet of Things

technologies will be able to sense and react to the real world

for humans.”

As of 2012, 2.5 quintillion (2.5 × 1018) bytes of data are cre-

ated daily1. In IoT, connecting all of the things that people care

about in the world becomes possible. All these things would be

able to produce much more data than nowadays. The volumes

of data are vast, the generation speed of data is fast and the

data/information space is global (James et al., 2009). Indeed,

IoT is one of the major driving forces for big data analytics.

Given the scale of IoT, topics such as storage, distributed pro-

cessing, real-time data stream analytics, and event processing

are all critical, and we may need to revisit these areas to im-

prove upon existing technologies for applications of this scale.

In this article, we systematically investigate the key technolo-

gies related to the development of IoT and its applications, par-

ticularly from a data-centric perspective. The aim of this work

is to provide a better understanding of the current research ac-

tivities and issues. Fig. 2 shows the roadmap of this article.

As can be seen from the figure, we review and compare tech-

nologies including data streams, data storage models, search-

ing, and event processing technologies, which play a vital role

in enabling the vision of IoT. We also describe some relevant

applications from several representative areas. Although some

reviews about IoT have been conducted recently (e.g., Atzori

et al. (2010); Zeng et al. (2011); An et al. (2013); Perera et al.

(2013); Li et al. (2014); Yan et al. (2014)), they focus on high

level general issues and are mostly fragmented. In addition,

these articles do not specifically cover techniques on data pro-

cessing and management, which is fundamentally critical to

fully embrace IoT. To the best of our knowledge, this is the first

article that studies and discusses state-of-the-art techniques of

IoT from the data-centric perspective.

The remainder of the article is organized as follows. Sec-

tion 2 2 identifies an IoT data taxonomy. Section 3 reviews

1http://www-01.ibm.com/software/data/bigdata/

the data streaming techniques and Section 4 focuses on the data

models and storage technologies for IoT. Search and event pro-

cessing technologies are discussed in Sections 5 and 6, respec-

tively. In Section 7, some typical ongoing and/or potential IoT

applications where data techniques for IoT can bring signifi-

cant changes are described. Finally, Section 8 highlights some

research open issues on IoT from the data perspective and Sec-

tion 9 offers some concluding remarks.

2. IoT Data Taxonomy

In this section, we identify the intrinsic characteristics of IoT

data and classify them into three categories, including Data

Generation, Data Quality, and Data Interoperability. We also

identify specific characteristics of each category, and the overall

IoT data taxonomy is shown in Fig. 3.

2.1. Data Generation

• Velocity. In IoT, data can be generated at different rates.

For example, for GPS-enabled moving vehicles in road

networks, the GPS signal sampling frequency could be ev-

ery few seconds, every few minutes, or even every half an

hour. But some sensors can scan at a rate up to 1,000,000

sensing elements per second2. On one hand, it is chal-

lenging to handle very high sampling rates, which require

efficient processing of the fast generated data. On the other

hand, it is also challenging to deal with low sampling rates,

due to the fact that some important information may be lost

for data processing and decision making.

• Scalability. Since things are able to continuously generate

data together with the foreseeable excessively large num-

ber of things, the IoT data is expected to be at an extremely

large scale. It is easy to image that, in IoT data processing

systems, scalability will be a long standing issue, aligning

with the current Big Data trend.

• Dynamics. There are many dynamic elements within IoT

data. Firstly, many things are mobile, which will lead to

different locations at different times. Since they will move

to different environments, the sensing results of things will

also be changing to reflect the real world. Secondly, many

things are fragile. This means the generated data will

2https://www.tekscan.com/support/faqs/what-are-sensors-sampling-rates
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change overtime due to the failure of things. Thirdly, the

connections between things could be intermittent. This

also creates dynamics in any IoT data processing system.

• Heterogeneity. There will be many kinds of things po-

tentially connecting to the Internet in the future, ranging

from cars, robots, fridges, mobile phones, to shoes, plants,

watches, and so on. These kinds of things will generate

data in different formats using different vocabularies. In

addition, there will be assorted IoT data processing sys-

tems, which will also provide data in customized formats

to tailor different data needs.

2.2. Data Quality

• Uncertainty. In IoT, uncertainty may come from different

sources. In RFID data, the uncertainty can refer to miss-

ing readings, readings of non-existing IDs, etc. In wireless

sensor networks, uncertainty can refer to sensing precision

(the degree of reproducibility of a measurement), or accu-

racy (the maximum difference that will exist between the

actual value and the indicated value), etc.

• Redundancy. Redundancy can also be easily observable

in IoT. For example, in RFID data, the same tags can be

read multiple times at the same location (because multi-

ple RFID readers exist at the spot or tags are read multiple

times at in the same spot) or at different locations. In wire-

less sensor networks, a group of sensors of the same type

may also be deployed in a nearby area, which can produce

similar sensing results of that area. For the same sensor,

due to the possible high sampling rates, redundant sensing

data can be produced.

• Ambiguity. Dealing with a large amount of ambiguity

in IoT data is inevitable. The data produced by assorted

things can be interpreted in different ways due to different

data needs from different things or other data consumers.

Such data can also be useful and important to any other

kinds things, which brings about the challenges of proper

interpretation of the produced data to different data con-

sumers.

• Inconsistency. Inconsistency is also prevalent in IoT data.

For example, in RFID data, inconsistency can occur due

to missing readings of tags at some locations along the

supply chain. It is also easy to observe inconsistency in

sensing data as when multiple sensors are monitoring the

same environment and reporting sensing results. Due to

the precision and accuracy of the sensing process and other

problems including packet loss during transmission, data

inconsistency is also an intrinsic characteristics in sensing

data.

2.3. Data Interoperability

• Incompleteness. In order to process IoT data, being able

to detect and react to events in real-time, it is important to

combine data from different types of data sources to build

a big and complete picture of relevant backgrounds of the

real world. However, as this process relies on the cooper-

ation of mobile and distributed things who are generating

relevant background data, incompleteness is easily observ-

able in IoT data. Suppose there are a large number of avail-

able data sources. it is of great importance to determine

which data sources can best address the incompleteness of

data for a given data processing task.

• Semantics. To address the challenges posed by the deluge

of IoT data, things, or machines acting as the major data

consumers should be a promising trend for data processing

in the IoT era. Inspired by Semantic Web technologies,

in order to enable machines to understand data for human

beings, injecting semantics into data could be an initial

step. Therefore, semantics within IoT data will play an

important role in the process of enabling things/machines

to understand and process IoT data by themselves.

3. Data Streams

A data stream is a sequence of data objects, of which the

number is potentially unbounded. A data stream may be con-

tinuously generated at a rapid rate. In the data stream, each data

object can be described by a multidimensional attribute vec-

tor within a continuous, categorical, or mixed attribute space

(de Andrade Silva et al., 2013). There are some typical charac-

teristics of data streams:

• Continuous arrival of data objects

• Disordered arrival of data objects

• Potentially unbounded size of a stream

• Normally no persistence of data objects after being pro-

cessed

• Changing probability distributions of the unknown data

generation process

Due to the excessive amount of data produced by all kinds of

things in the era of IoT, data streams play an important role in

data processing and analysis. This section will focus on related

data stream research efforts that can help handle IoT data. Our

discussions include general data stream processing, RFID data

stream processing, and RDF triple stream processing.

3.1. General Data Stream Processing

Data streams can be generated in various scenarios, including

a network of sensor nodes, a stock market or a network moni-

toring system and so on. In many scenarios such as the sensor

network scenario, sensor nodes are normally powered by batter-

ies or solar panels. Therefore, in typical a sensor data process-

ing system, one of the challenging issues is power constraints.

In most applications, communication across sensor networks or

with a centralized server requires the largest amount of energy

as sensing consumes less energy (Subramaniam and Gunopu-

los, 2007). If sensor nodes send their raw sensing data to a

3



Figure 3: IoT Data Taxonomy

server without consideration of the amount of energy needed

to communicate, the battery life of the sensor nodes could be

drastically reduced. Consequently, sensor data processing tech-

niques, including data aggregation, data compression, modeling

and online querying, should be performed on-site or in-network

to reduce communication cost (Subramaniam and Gunopulos,

2007). Furthermore, numerous demands on efficient data pro-

cessing algorithms for sensor systems arise due to the limita-

tions of computational power of sensor nodes as well as the ex-

istence of inaccuracy and bias in the sensor readings. In other

scenarios, such as stock market and network monitoring sys-

tems, there also exist challenges in processing high-rate data

streams.

3.1.1. Query Processing

There are several important queries to be considered (Subra-

maniam and Gunopulos, 2007):

• Aggregate Queries. Aggregate Queries is an important

class of queries in sensor systems, including MIN, COUNT

and AVG operators. Various techniques have been pro-

posed to efficiently process these aggregate operators in

sensor systems, which can help to effectively reduce power

consumption. Considering the properties of the aggre-

gate functions, the in-network partial data could be pre-

processed first, which can then be utilized to produce the

final results for the issued queries.

• Join Queries. An example of join queries is “Return the

objects that were detected in both regions R1 and R2”

(Subramaniam and Gunopulos, 2007). To evaluate the

query, stream readings from the sensors in regions R1

and R2 should be joined first before we can determine

whether an object was detected in the two designated re-

gions. Join queries are useful in many applications, such

as monitoring an environment where multiple sensors are

deployed, tracking moving objects that are monitored by

several types of sensors, etc.

• Top-k Monitoring. The general problem of monitoring top-

k values from distributed data streams is investigated in

(Babcock and Olston, 2003). A technique is proposed to

ensure the validity of the most recently communicated top-

k answers by maintaining some specified arithmetic con-

straints at the stream sources. User specified error toler-

ance is also considered in order to provide high-quality

answers. This technique can help reduce the overall com-

munication cost between different sources.

• Continuous Queries. To monitor designated changes in

an environment, sensors are typically required to answer

queries in continuous manner. For instance, motion or

sound sensors might be used to evaluate some continuous

queries, such as “Turn lights off if no motion is detected

in area A in the past 10 minutes”. When the query con-

straints are satisfied, the action of turning lights off could

be automatically triggered by these sensors. If there are

more than one continuous query evaluated over the same

sensor readings, the storage and computation can be opti-

mized by exploiting the fact that the sources of the queries

and their partial results could overlap (Subramaniam and

Gunopulos, 2007).

In IoT, query processing over streaming data will need to fo-

cus more on IoT related aspects of the streaming data, such

as uncertainty, ambiguity and inconsistency. Furthermore, it is

also imperative to address issues related to velocity and hetero-

geneity. For example, how can one efficiently aggregate the in-

formation stream from more than one thing with a large amount

of ambiguity and inconsistency; how can one perform accurate

join queries over uncertain IoT data streams with ambiguous

and incomplete information; how can one identify top-k values

from millions of heterogeneous IoT data streams efficiently and

effectively; how can one monitor changes based on continuous

queries from a large number of dynamic, fast, heterogeneous

and incomplete IoT data streams, etc. In addition, new types of

queries may also need to be considered, such as source selection

queries for overcoming data incompleteness, and so on.

3.1.2. Stream Mining

Stream mining can extract useful rules/information from data

streams. Some typical tasks for stream mining are listed in the

4



following:

• Clustering. Clustering is the task of grouping a set of ob-

jects in such a way that objects in the same group (called

a cluster) are more similar to each other than to those

in other groups (clusters). Clustering techniques for data

streams typically continuously cluster objects on memory

constrained devices with some time limitations. Due to

these restrictions, there are some requirements to consider

when designing algorithms for clustering data streams

(Gama, 2010): (i) providing clustering results via fast and

incremental processing of data objects; (ii) rapidly detect-

ing new clusters or changes of existing clusters; (iii) scal-

ing to the potentially unbounded number of objects in data

streams; (iv) providing a model representation that is con-

sistently compact regardless the number of data objects;

(v) rapidly detecting the presence of outliers and acting ac-

cordingly; and (vi) dealing with different data types, such

as XML trees, DNA sequences, GPS temporal and spatial

information.

• Classification. Classification uses prior knowledge to

guide the partitioning process to construct a set of clas-

sifiers to represent the possible distribution of patterns

(Wang and Liu, 2011). Basically, compared with cluster-

ing, classification is a supervised learning process whereas

clustering is an unsupervised learning process. More for-

mally, a typical classification algorithm can be defined as

follows (Wang and Liu, 2011): given a predefined classi-

fier and two sets of data, labeled data and unlabeled data,

the labeled data is used to train the classifier and the unla-

beled data can then be classified by the trained classifier.

• Outlier and Anomaly Detection. In outlier and anomaly

detection, the main task is to find data points that are most

different from the remaining points in a given data set.

Most existing outlier detection algorithms are based on the

distance between every pair of points. The points that are

most distant from all other points will be marked as out-

liers (Knorr and Ng, 1998). To be more specific, an object

O in a dataset T is a DB(p,D)-outlier (DB here refers to

distance-based) if at least fraction p of the objects in T lies

greater than distance D from O. This kind of algorithms

suffer from the same performance issue as they all run in

O(n2) time. Hence, it is difficult to extend such approaches

to distributed streaming data sets because points in those

data sets normally arrive at multiple distributed end-points

and must be processed incrementally.

• Frequent Itemset Mining. Frequent itemset mining is to

find sets of items or values that co-occur frequently, or in

other words, to find co-occurrence relationships in a trans-

actional data set. Here a transactional data set refers to

a data set where a set of items appear together in some

specified context. Given a predefined support s, the goal

in frequent itemset mining is to find all subsets of items

that occur at least s number of times, or in other words,

that appear in at least s transactional data sets at hand.

Frequent itemset mining is both CPU and I/O intensive.

Therefore, it is costly to completely re-mine a dynamic

data set, which will be a typical case in IoT.

In IoT, multiple data streams processing would be more

preferable as data streams can be generated at anywhere around

the world and can be accessed globally via the Internet if be-

ing made public. For example, SmartSantander3 proposes a

city-scale experimental research facility in support of typical

applications and services for a smart city. Around 20,000

sensors have been deployed to provide a variety of services,

such as static environmental monitoring, mobile environmen-

tal monitoring, parks and gardens irrigation, outdoor parking

area management, guidance to free parking lots and traffic in-

tensity monitoring. A large number of data streams have to be

processed efficiently to provide real-time monitoring of a smart

city. Furthermore, how to efficiently and effectively mine IoT

data streams that are highly dynamic, heterogeneous, uncertain,

ambiguous, inconsistent, and incomplete will also require a re-

visit of the existing streaming mining techniques.

3.2. RFID Data Stream Processing

In 2003, a nonprofit open forum called the Ubiquitous ID

Center4 was established. So far, more than 500 companies

and organizations worldwide have contributed to it, publish-

ing uID standards and industrial open standard specifications.

uID standards are based on the uID architecture (Koshizuka

and Sakamura, 2010), which identifies real-world entities via

Radio-Frequency Identification (RFID) tags or barcodes, deter-

mines contextual information such as environmental parame-

ters from networked sensors, and adapts information services

according to the data it obtains.

RFID systems consist of radio frequency (RF) tags

(also called transponders) and RF tag readers (also called

transceivers). Readers may be able to both read data from and

write data to a transponder. RFID is a promising electronic

identification technology that enables real-time monitoring and

tracking applications in a variety of domains. Object identifi-

cation information is stored on an RFID tag. This could be an

Electronic Product Code (EPC)5. EPC is a unique item iden-

tification code, which normally contains information about the

manufacturer, the type of item and the serial number of the item

(the tag ID). Streams of RFID reading data, whose basic form

is a triplet < tag id; reader id; timestamp >, raise new chal-

lenges since the data may be insufficient, incomplete, and volu-

minous (Sheng et al., 2008).

In the past decade, the Auto-ID Center, now which is called

the Auto-ID Labs6, has attracted industrial interests from com-

panies and government initiatives to advance new developments

and interests in RFID technology. One of the important ad-

vances is the so-called “Networked RFID” (Roussos, 2008).

Networked RFID aims at connecting isolated RFID systems

3http://www.smartsantander.eu/
4uID Center: www.uidcenter.org
5http://www.epc-rfid.info/
6http://www.autoidlabs.org
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and software via the Internet. The EPcglobal Network, initially

designed by the Auto-ID Labs and then further developed by

EPCglobal at GS17, is one of the notable efforts for Networked

RFID.

In the following, we review some major RFID data stream

processing techniques and summarize them in Table 1.

3.2.1. RFID Data Cleaning (Uncertainty and Unreliability)

SMURF (Statistical sMoothing for Unreliable RFid data)

(Jeffery et al., 2006) is the first declarative, adaptive smoothing

filter for cleaning raw RFID data streams. Unlike conventional

techniques which expose the smoothing window parameter to

the application, SMURF adapts the window size automatically

and continuously over the lifetime of the system based on ob-

served readings.

Periods of dropped readings and periods when a tag has

moved are difficult to distinguish, which poses some challenges

for the design of SMURF. To overcome such difficulty, a statis-

tical sampling-based approach is put forward in SMURF. The

main motivation is that RFID data streams can be modeled as a

random sample of the tags in a reader’s detection range. This

sample-based view of observed RFID readings enables SMURF

to develop algorithms based on statistical sampling theory to

adapt the window size effectively.

Basically, the false reads in RFID streams can be classified

into two categories (Liao et al., 2011):

• Missing-Reads. Though an RFID tag is located in the

range of a reader, it might not be read at all, thereby lead-

ing to a false prediction that the tag is not present. This

may be caused by the weakness of RF signal, shortage of

power, shield of signal between the tag and the reader, and

the collision between tags. This type of errors is also re-

ferred as false negatives.

• Cross-Reads. When an RFID tag locates outside the range

of a reader, but it might be captured by this reader which

leads another false prediction that the object is present in

the scope of this reader (sometimes called ghost reading).

Cross-reads may be arisen by the reflection of metal items,

the abrupt strengthen of RF, and the change of antenna

directions. This type of errors is also called false positives.

SMURF cannot eliminate the cross-reads generated by phys-

ical factors. A kernel density-based probability cleaning

method, called KLEAP, can be used to filter the cross-reads in

RFID data streams (Liao et al., 2011). KLEAP considers cross-

reads as outliers, thus, the determination of cross-reads is trans-

formed into the issue of detecting outliers on data streams. The

density-based methods often perform better than the distance-

based one, so KLEAP applies the density-based methods to de-

tect cross-reads. It detects the exact positions of tags over the

RFID data streams through examining the kernel densities of

each tag captured by multiple readers.

7http://www.gs1.org/

The knowledge on the map of the real world and on the motil-

ity characteristics (such as the maximum speed) of the mon-

itored objects is exploited by Fazzinga et al. (2014). From

this knowledge of the domain, constraints can be naturally de-

rived on the connectivity between pairs of locations (direct un-

reachability constraints) and/or on the time needed for reach-

ing a location starting from another one (traveling-time con-

straints). These constraints can be used to discard interpre-

tations of the data corresponding to inconsistent trajectories.

Then a graph is built in the following way: its nodes corre-

spond to pairs < location, timestamp > and inside the graph,

paths from source to target nodes one-to-one correspond to the

valid trajectories in real word. Each node or edge is assigned a

probability obtained by revising the a priori probability of the

corresponding pair < location, timestamp >, so that the overall

probability of a source-to-target path is the conditioned proba-

bility of the corresponding trajectory. In this way, trajectories

of RFID-monitored objects can be cleaned.

3.2.2. RFID Data Inference and Compression

RFID data inference techniques are closely related to RFID

data cleaning techniques because inference techniques will

need to clean RFID data first and then they can infer to the

high level information about the tagged objects, i.e., location

and containment relationships. Since raw RFID data contains a

large amount of redundancies, RFID data compression is also

applied to reduce space requirements after inference results

have been obtained. RFID data compression is a further step

beyond inference, where compression is performed based on

the results of inference to remove the redundant data.

Noisy, raw data streams from mobile RFID readers are con-

sidered and a probabilistic approach to translate these streams

into clean, rich event streams with location information is em-

poyed by Tran et al. (2009). Their probabilistic model is built

based on the mobility of the reader, object dynamics, and noisy

readings. Particle filtering is used to infer clean information

about object locations from raw streams captured from mobile

RFID readers.

The aforementioned data cleaning and inference techniques

focus on smoothing over time, where containment relationships

are not considered. Containment refers to inter-object relation-

ships, e.g., containment between objects, cases, and pallets.

Containment queries can be useful for enforcing packaging and

shipping regulations. Some examples of containment queries

have been provided by Cao et al. (2011), such as “raise an alert

if a flammable item is not packed in a fireproof case” or “verify

that the food containing peanuts is never exposed to other food

cases for more than an hour”. They also observe that some

known containment relations can be used to determine object

locations by smoothing over these facts. For example, suppose

that we can infer that a specific set of objects have been packed

in the same container. According to such knowledge, if one

object in the container is read, all of the other objects must be

in the same place. However, the fact is that the containment

relationships are not known in advance. Therefore, a graphic

model is proposed to infer containment relationships and to de-

tect changes in containment relationships (Cao et al., 2011; Nie
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et al., 2012).

3.3. RDF Triple Stream Processing

Linked Data is a method for publishing structured data and

interlink such data to make it more useful8. It builds upon stan-

dard Web technologies such as HTTP, RDF and URIs and ex-

tends these technologies to share information. Linked Data can

be understandable by computers. Data from different sources

can be connected and queried in the form of Linked Data. Basi-

cally, Linked Data refers to a set of best practices to be followed

in order to publish and link data on the Web, using the following

basic principles9:

• Use URIs as names for things.

• Use HTTP URIs so that people can look up those names.

• When someone looks up a URI, provide useful informa-

tion, using appropriate standards (RDF, SPARQL).

• Include links to other URIs, so that more things can be

discovered.

The concept of Linked Stream Data applies the Linked Data

principles to streaming data, so that data streams can be pub-

lished as part of the Web of Linked Data. Stream reasoning

can provide the abstractions, foundations, methods and tools re-

quired to integrate data streams, the Semantic Web and reason-

ing systems. Substantial research efforts have been put forward,

focusing on how to apply reasoning on streaming data, how to

publish raw streaming data and connect them to the existing

data sets on the Semantic Web, and how to extend the SPARQL

query language to process streaming data (Zhang et al., 2012).

These research efforts lay some foundations of semantic IoT

technologies, facilitating machine-to-machine communication

in IoT.

3.3.1. Linked Stream Processing and Reasoning

Efforts to apply the linked data principles to stream (sensor)

data have been initiated and this wealth of information could be

easily included in the Linked Data cloud10.

There are three typical streaming RDF/SPARQLS engines,

including Streaming SPARQL (Bolles et al., 2008), SPARQL-

Stream (Calbimonte et al., 2010), C-SPARQL (Barbieri et al.,

2010), and EP-SPARQL (Anicic et al., 2011). Each of these

systems also proposes its own SPARQL extension for streaming

data processing. In these studies, SPARQL has been extended

to have sliding window operators for RDF stream processing.

For example, Streaming SPARQL extends SPARQL to sup-

port window operators. But it does not consider performance

issues, specially when designing the data structures. Further,

it does not consider the sharing of computing states for con-

tinuous execution. Another example is SPARQLStream, which

8en.wikipedia.org
9http://www.w3.org/DesignIssues/LinkedData.html

10http://linkeddata.org/

aims at enabling ontology-based access to streaming data. It de-

fines a SPARQLStream language, which can be translated into

another relational stream language based on mapping rules.

C-SPARQL (Continuous SPARQL) (Barbieri et al., 2010)

attempts to facilitate reasoning upon rapidly changing infor-

mation. In C-SPARQL, continuous queries are divided into

static and dynamic parts and streaming data is transformed into

non-streaming data within a specified window in order to apply

standard algebraic operations, such as aggregate functions like

COUNT, COUNT DISTINCT, MAX, MIN and AVG. The static

parts will be loaded into relations, and the continuous queries

are executed by processing the stream data against these rela-

tions. Event Processing SPARQL (EP-SPARQL), a language to

describe event processing and stream reasoning, can be trans-

lated to ETALIS (Anicic et al., 2011), a Prolog-based complex

event processing framework. First, RDF-based data elements

are transformed into logic facts, and then EP-SPARQL queries

are translated into Prolog rules.

Different from the above approaches, CQELS (Phuoc et al.,

2011) is a native streaming RDF/SPARQL system built from

scratch. CQELS defines and implements a native processing

model in the query engine. Its query execution framework can

also dynamically adapt the query processor to changes in the

input data. By using data encoding and caching of intermedi-

ate query results, CQELS reduces external disk access on large

Linked Data collections. Some indexing techniques are also

adopted to enable faster data access. Table 2 compares all these

systems from various aspects.

3.3.2. Extracting RDF Triples from Unstructured Data Streams

Although the current Linked Open Data (LOD) cloud has

tremendously grown over the last few years, it delivers mostly

encyclopedic information (such as albums, places, kings, etc.)

and fails to provide up-to-date information (Gerber et al., 2013).

Based on such observation, they develop RdfLiveNews, an ap-

proach that allows extracting RDF from unstructured (i.e., tex-

tual) data streams in a fashion similar to the live versions of the

DBpedia11 and LinkedGeoData12 datasets. RdfLiveNews takes

unstructured data streams as its input. It firstly removes dupli-

cates in the streams. Then it uses the cleaned streams as a basis

to extract patterns for relations between known resources. Next,

the patterns will be clustered to labeled relations and finally will

be used as a basis for generating RDF triples.

4. Data Storage Models

The nature of data produced by the Internet of Things calls

for a revisit of data storage techniques, which will be further

discussed in this section.

4.1. New Architecture

Traditional Database Management Systems (DBMSs) em-

ploy record-oriented (i.e., a record is represented by a row in a

11http://live.dbpedia.org/sparql
12http://live.linkedgeodata.org/sparql
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Table 1: Comparisons of RFID Streaming Techniques.

Approach Vel Sca Dyn Het Unc Red Amb Incs Incp Sem

SMURF (Jeffery et al., 2006)
√ √

KLEAP (Liao et al., 2011)
√ √ √

Mobility-Monitoring (Fazzinga et al., 2014)
√ √ √ √ √

Mobile-RFID-Data-Cleaning (Tran et al.,

2009)

√ √ √ √

RFID-Data-Cleaning (Containment) (Cao

et al., 2011; Nie et al., 2012)

√ √ √ √ √

Note: Key elements that have been considered.

Vel: Velocity Sca: Scalability Dyn: Dynamics Het: Heterogeneity Unc: Uncertainty

Red: Redundancy Amb: Ambiguity Incs: Inconsistency Incp: Incompleteness Sem: Semantics

Table 2: Comparisons of Linked Stream Processing and Reasoning.

Approach Native Aggregation Support Reasoning

Support

SPARQL 1.1

Support

Streaming SPARQL

(Bolles et al., 2008)

No Limited Limited Limited

SPARQLStream (Calbi-

monte et al., 2010)

No Limited Limited Limited

C-SPARQL (Barbieri

et al., 2010)

No Rich Limited Limited

EP-SPARQL (Anicic

et al., 2011)

No Limited Rich Limited

CQELS (Phuoc et al.,

2011)

Yes Limited Limited Limited

relational table) storage systems. With this row store architec-

ture, a single disk write is able to store a single record with mul-

tiple attributes to disk. Records writes and updates are normally

of high performance in these systems. Therefore, a DBMS with

a row store architecture can be called a write-optimized system.

In contrast, some systems need to deal with ad-hoc querying of

large amounts of data, where read performance is of more im-

portance. For such systems, read-optimized is the major design

factor. Take data warehouses as an example. They represent

one class of read-optimized system. In these read-optimized

systems, a column-store architecture is a better choice. This

is because in a column-store system, the values for each sin-

gle column (or attribute) are stored contiguously, which can be

easily optimized for high-performance querying.

C-Store, a column-store architecture that supports the stan-

dard relational logical data model, has been designed by Stone-

braker et al. (2005). Compared with the traditional DMBS ar-

chitecture, the major differences are: (i) data in C-Store is not

physically stored using its related relational logical data model;

and (ii) whereas most row stores implement physical tables di-

rectly and then add various indexes to speed access, C-Store im-

plements only projections. Here, projections are sorted subsets

of the attributes of a table. Furthermore, superior performance

of column store based systems has been shown over the major

RDBMS (relational DBMS) system (Stonebraker et al., 2007).

It is experimentally demonstrated that specialized engines in the

data warehouse, stream processing, text, and scientific database

markets can speed up the querying performance by 1-2 orders

of magnitude using the column-store architecture. They also

suggest that the DBMS vendors (and the research community)

should start from scratch and design novel systems for require-

ments to be fulfilled in the near future, rather than just adapting

current systems for those new requirements.

4.2. Large-Scale Storage in Distributed Environments

Storage issues in large scale systems have arisen due to the

arrival of the big data era. For example, users of websites such

as Facebook, Ebay and Yahoo! usually demand fast response

times. One solution for this is to replicate data across glob-

ally distributed datacenters. However, it is discovered that to

replicate all data to all locations may waste huge amounts of re-

sources since users from different locations may have different

data consumption needs (Kadambi et al., 2011). For example,

an European server may not need to maintain a replica of some

rare accessed records in an Asian server. By exploiting such

observations, Kadambi et al. (2011) propose a selective replica

strategy which supports replica of tables in the Web databases

at record level to alleviate the overly-replicated issue. In the

selective replica strategy, each replica location stores a full or

partial copy of the replicated table depending on the data needs.

Specifically, in each location, a given record is stored either as

a full replica or as a stub. A full replica is a normal copy of

the record and possibly some metadata for supporting the se-

lective replica strategy while a stub contains only the record’s
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primary key and metadata. In this way, since large-scale Web

databases are selectively replicated on a record-by-record basis,

bandwidth and disk costs can be saved.

Therefore, to meet the exceptional demands of data storage

in IoT, developments of large-scale, distributed storage systems

are of essential. There are three factors or requirements to be

considered when designing a distributed storage system (Chen

et al., 2014):

• Consistency: Consistency means to ensure that multiple

copies of the same data are identical since server failures

and parallel storage may cause inconsistency.

• Availability: Availability refers to the requirement that the

entire distributed storage system (which contains multiple

servers) should not be seriously affected by some extent of

server failures and should be able to provide satisfactory

reading and writing performance.

• Partition Tolerance: Since multiple servers are intercon-

nected by a network and the data is partitioned across the

network, the distributed storage system should have a cer-

tain level of tolerance to problems caused by network fail-

ures. This refers to partition tolerance requirement.

Interestingly, it has been proven by Gilbert and Lynch (2002)

that a distributed storage system could not simultaneously meet

the requirements on consistency, availability, and partition tol-

erance, and at most two of the three requirements can be satis-

fied at the same time. On top of this theory, there are three types

of distributed storage systems: (1) a CA system, which ignores

partition tolerance; (2) a CP system, which ignores availability;

and (3) an AP system, which ignores consistency. The compar-

isons of these systems and some of their representative works

are summarized in Table 3.

4.3. Storage on Resource-Constrained Devices

Storage issues also arise in resource-constrained scenarios in

IoT. For example, in sensor networks, communication activ-

ity normally plays a more important role than storage. But it

is argued that for batch data collection, delay-tolerant mobile

applications, and disconnected operations in static networks,

the storage-centric paradigm becomes more critical (Mottola,

2010). It is favored by decreasing costs and increasing capacity

of storage hardware. SQUIRREL is also proposed in the same

work, which is a lightweight run-time layer allocating data to

different storage areas, based on data size versus energy trade-

offs.

SolarStore, a power storage service for solar-powered

storage-centric sensor networks has been developed by Yang

et al. (2009). The main goal of SolarStore is to improve the to-

tal amount of data that can be eventually retrieved from the net-

work. It adaptively balances data reliability against data sensing

since solar energy is renewable and dynamic. For example, it

chooses to replicate data in the network until the next opportu-

nity to upload data to the server. The degree of data replication

also varies dynamically depending on the availability of solar

energy and sensor storage.

Early database systems for sensor networks such as TinyDB

and Cougar only act as filters for data collection networks and

not as databases, i.e., no data is stored in, or retrieved from,

any database. A database management system for resource-

constrained sensors named Antelope is presented by Tsiftes and

Dunkels (2011). Antelope supports run-time creation and dele-

tion of databases and indexes and hence is a dynamic database

system. It is the first DBMS for resource-constrained sen-

sor devices, which enables a class of sensor network systems

where every sensor holds a database. It is envisioned that

database techniques would become increasingly important in

the progress of sensor network applications and energy-efficient

storage. Further, indexing and querying would play important

roles in emerging storage-centric applications.

Besides, flash storage has been used for logging data on a

sensor node, which is called amnesic storage systems (Nath,

2009). An amnesic storage system archives streaming data us-

ing two key techniques: (i) data is compressed (usually with

lossy compression methods) in an online fashion before be-

ing archived; and (ii) an amnesic storage system uses aging

archived data by reducing the fidelity of older data to make

space for newer data.

5. Search Techniques

Searching and finding relevant objects from billions of things

is one of the major challenges for the future Internet of Things

and can bring about huge potential impact to humans. Sup-

porting technologies for searching things in the IoT are very

different from those used in searching Web documents because

things are tightly bound to contextual information (e.g., loca-

tion) and have no easily indexable properties (e.g., human read-

able text in the case of Web documents). In addition, the state

information of things is dynamic and rapidly changing. Things

discovery calls for innovative ways of managing and searching

from dynamic data, which makes it different from traditional

Web searching. This section overviews the relevant areas such

as the Deep Web, Semantic Web and then discusses state-of-

the-art techniques in searching things in the IoT environments.

We also summarize these techniques in Table 4.

5.1. Deep Web and Semantic Web

Deep Web refers to the portion of content on the World Wide

Web that is not indexed by standard search engines. Deep Web

data is not directly being seen from Web pages but is accessible

typically via HTML forms from the Web pages. The size of

the Deep Web is estimated to be several orders of magnitude

larger than that of the so-called Surface Web (the Web that is

accessible and indexable by text search engines).

The Deep Web provides a wealth of hidden data in semi-

structured form, accessible through Web forms and Web ser-

vices. Since the data is hidden, to reach the whole content of

the World Wide Web by just following hyperlinks is impossi-

ble. Regarding such issues, on top of XML, the Semantic Web

grows as a common structured data source. With the W3C stan-

dards Resource Description Framework (RDF) and Web Ontol-

ogy Language (OWL), the Semantic Web aims to unify the way
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Table 3: Comparisons of three types of distributed storage systems.

Type Pros Cons Representatives

CA Single copy of data; Consistency is easily

ensured; Availability is assured by the ex-

cellent design of databases

Could not handle network fail-

ures

Traditional small-

scale relational

databases

CP Maintain several copies of the same data;

A certain level of fault tolerance is en-

sured; Consistency is ensured by guarantee-

ing multiple copies of data to be identical

Could not ensure sound avail-

ability due to the high cost for

consistency assurance

BigTable (Chang

et al., 2008); Hbase

(Apache, 2014)

AP Maintain several copies of the same data;

A certain level of fault tolerance is ensured;

Availability is assured by the design of dis-

tributed storage systems

Strong consistency is not en-

sured; May cause a certain

amount of data errors

Dynamo (DeCandia

et al., 2007); Cas-

sandra (Lakshman

and Malik, 2010)

semantic information is stored and exchanged. The Seman-

tic Web makes it possible for machines themselves to not just

read, but also “understand” the data from data sources, which

enables machine to machine communication. In particular, lan-

guages such as as Microformats13 and schema.org, can be used

to add semantics to the descriptions of Web resources (includ-

ing things).

5.2. Web Search

The frequent changes and the unprecedented scale of the

Web together pose enormous challenges to Web search engines,

making it challenging to provide the most up-to-date and highly

relevant information to its users. In IoT, this may become even

more challenging as things would scale up the Web further and

make the Web change more rapidly. For example, Tsubuyaku

Sensor14 is a new wireless device from Japanese Ubiquitous

Computing Technology. It can monitor conditions such as tem-

perature, humidity and radiation levels. It then automatically

tweet the resulting data via Twitter. In this way, a sensor be-

comes a virtual Twitter user, which can actively post tweets on

the Web.

5.2.1. Real-time Web Search

Real-time web search refers to the retrieval of very latest con-

tent which is in high demand. It is reported that Twitter handled

more than 50 million tweets per day in 2010 (Chen et al., 2011).

Providing real-time search service is indeed very challenging in

such large-scale microblogging systems because thousands of

new updates need to be processed per second.

Twitter is real-time micro-blogging and the real-time inter-

action of events such as earthquakes in Twitter is investigated

in (Sakaki et al., 2010). They consider each Twitter user as a

virtual sensor and apply Kalman filtering and particle filtering

for estimating the centers of earthquakes and the trajectories of

typhoons. Similarly, two challenges not encountered in non-

real-time web search when supporting real-time web search

have also been identified by Dong et al. (2010), which are (i)

13http://www.microformats.org
14http://ts.uctec.com/tsensor/index-e.php

quickly crawling relevant content and (ii) ranking documents

with link and click information. Then they propose to use the

micro-blogging data stream to detect fresh URLs and to com-

pute novel and effective features for ranking fresh URLs based

on micro-blogging data.

5.2.2. Searching information over RDF Data

Searching information from RDF data is important as more

and more information is published in the form of RDF (e.g., via

Linked Open Data Cloud). Efficient management of RDF data

is also an important factor in realizing the Semantic Web vision.

Performance and scalability issues need to be addressed as the

Semantic Web technology is applied to real-world applications.

Unlike the relational database community, the Semantic Web

community uses a very different data model, which is RDF.

MIDAS-RDF, a distributed P2P RDF/S repository that is

built on top of a distributed multi-dimensional index structure,

has been presented by Tsatsanifos et al. (2011). It features fast

retrieval of RDF triples satisfying various pattern queries by

translating them into multi-dimensional range queries, which

can be processed by the underlying index in hops logarithmic

to the number of peers.

5.2.3. Collaborative Web Search

Web search engines often answer user queries based on data

and information in relevant structured databases, which will be

searched in isolation. Since a single database may not con-

tain sufficient information to answer the query, the search often

produces empty or incomplete results. Motivated by this obser-

vation, web search results and the items in structured databases

have been exploited together to produce more complete answers

to a wide range of queries that traditional web search cannot

support well (Agrawal et al., 2009). Take query “light-weight

gaming laptop” as an example. Dell XPS M1330 should be

considered a match to such query as it is a light-weight laptop

and suitable for gaming. But if searching only for the query

keywords {light-weight, gaming} on the Web, Dell XPS

M1330 may not appear in the search results. Therefore, the

web search results (e.g. a set of relevant web documents) can
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Table 4: Comparisons of Search Techniques.

Approach Vel Sca Dyn Het Unc Red Amb Incs Incp Sem

Twitter-Sensing (Sakaki et al., 2010)
√ √ √

Real-time-Micro-Blogging-Search (Dong

et al., 2010)

√ √ √ √

MIDAS-RDF (Tsatsanifos et al., 2011)
√ √

Web-Search-from-Structured-Databases

(Agrawal et al., 2009)

√ √ √ √ √

Similarity-based-Entity-Search (Chaudhuri

et al., 2009)

√ √ √ √ √

Snoogle (Wang et al., 2010)
√ √

MAX (Yap et al., 2008)
√ √

Microsearch (Tan et al., 2010)
√

Dyser Elahi et al. (2009)
√ √ √

Collaborative-Mobile-Object-Sensing Frank

et al. (2008)

√ √ √

Note: Key elements that have been considered.

Vel: Velocity Sca: Scalability Dyn: Dynamics Het: Heterogeneity Unc: Uncertainty

Red: Redundancy Amb: Ambiguity Incs: Inconsistency Incp: Incompleteness Sem: Semantics

be utilized to help identify relevant information in some struc-

tured databases (Agrawal et al., 2009). Then the user queries

could be better answered.

Similarly, web search engines have also been exploited to

define new similarity functions for recognizing named entities

such as products, people names, or locations from documents,

such as “X61” and the entity “Lenovo ThinkPad X61 Note-

book” (Chaudhuri et al., 2009). The proposed new similarity

functions are more accurate than existing string-based similar-

ity functions because they aggregate evidence from multiple

documents, and exploit web search engines to measure simi-

larity.

5.3. Search of Things in IoT

In IoT, connecting things enabled by RFID, embedded sen-

sors and sensor networks to the Internet and publishing their

output on the Web would become a reality. Real-world objects

would have their own Web presence. Considering the potential

and profound impact of IoT technologies, search of things in

IoT will become as important as today’s document search on

the Web.

5.3.1. Key Words based Search of Things

Unlike search engines such as Google, searching for infor-

mation in the physical world is more difficult because the phys-

ical objects do not have (reliable) connections to virtual space.

For example, online books can be easily discovered by search-

ing but physical books at home may be more difficult to find.

This observation motivates the design of Snoogle (Wang et al.,

2010), a search engine for the physical world. The basic idea

behind Snoogle is that sensor nodes carry a textual description

of the object they will be attached to. Such description forms

the keywords for search of things. Then the key words informa-

tion of the whole sensor network is indexed using a two-tiered

hierarchy. The lower tier contains many mediators, which are

also called index points. Each index point maintains an aggre-

gate view of all sensors in a local area (e.g. a room) and every

sensor in the same area will be assigned to the same index point.

In the top tier, there is a single mediator called the key index

point. The key index point will maintain an aggregate view of

the whole network.

MAX, a system that users can easily locate objects, is also

designed (Yap et al., 2008). The main assumption is that tags

are attached to everyday objects and each tag stores a descriptor

of the object it is attached to (e.g., the book of Harry Potter).

Multiple descriptor words are allowed in each tag, enabling

users to label the object with richer information, so that oth-

ers can locate the object based on the label. A three-tiered

hierarchy of mediators is used. In the lowest tier, substations

represent immobile objects such as tables or shelves, on which

mobile tagged objects can be placed. In the middle tier, base

stations represent a geographical space such as a room contain-

ing multiple substations. In the top tier, the MAX server repre-

sents the entire space covered by the system. When searching

for an object left behind, it is easy to locate where the object

has been left by exploiting the knowledge of which substation

and base station it belongs to.

Microsearch is a system that runs on resource constrained

small devices capable of being embedded into everyday objects

(Tan et al., 2010). It allows users to do textual search in the lo-

cal storage of a stand-alone small device, without support from

a backend server. The challenge is that Microsearch runs in a re-

source constrained platform, where conventional search engine

design and algorithms cannot be used. Information retrieval

(IR) techniques for query resolution can answer top-k queries

in a space-efficient manner (Tan et al., 2010).

Another search engine mainly designed for searching things,

called Dyser, is proposed by Elahi et al. (2009). Dyser allows

users to search for real-world entities with a given state, such

as “hot” or “cold”. However, this approach imposes two strong
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conditions: (i) to perform a query, end users have to know the

vocabulary used by sensors (how states are named); and (ii) an

entity must be represented by all the sensors that compose it. In

order to estimate the probability of a sensor matching a query

with sufficient accuracy and to rank sensor matching results,

prediction models are adopted. The key idea of sensor ranking

is to exploit the periodic nature of people-centric sensors by

using appropriate prediction models.

5.3.2. Collaborative Search of Things

A comprehensive system for managing and finding every-

day objects relying on the collaboration of mobile phones in

an urban area as object-sensing devices has been presented by

Frank et al. (2008). For such tasks, the authors argue that the

necessary infrastructures for such system include a sensing in-

frastructure, a communication infrastructure and a commercial

infrastructure. Because of these requirements, the modern mo-

bile phone system, which contains mobile sensors, provides a

unique opportunity to realize collaborative search of everyday

objects. The sensing model of the proposed system associates a

probability with locations, meaning that the object currently has

a certain probability of being at a certain location, thereby ac-

celerating the search speed and reducing communication cost.

Mobility provided by mobile sensors increases spatial coverage

and hence the probability of finding a sought object.

6. Complex Event Processing

Data streaming techniques typically process incoming data

through a sequence of transformations based on common SQL

operators, like selection, aggregate, join, and these op-

erators are defined in general by relational algebra. By con-

trast, the complex event processing (CEP) model views the in-

formation in the streams as events in the physical world. These

events must be filtered, combined and transformed into higher-

level events for better understanding by computers and humans.

Similar to traditional publish-subscribe systems, CEP systems

allow subscribers to express their interest in composite events.

The focus of the CEP model is on detecting occurrences of par-

ticular patterns of (low-level) events indicating some higher-

level events, which may be interesting to some particular event

subscribers. In the era of IoT, CEP techniques lay part of the

foundation of supporting computers to sense and react to events

in the physical world. In the following, we survey some major

CEP techniques related to IoT and summarize these techniques

in Table 5.

6.1. Complex Event Processing

Systems for event processing and in particular event recogni-

tion (event pattern matching) accept a stream of time-stamped,

simple or low-level events as input. A low-level event is the

result of applying a computational derivation process to some

other event, such as an event coming from a sensor. Using

low-level events as input, (complex) event processing systems

identify composite or high-level events of interest (Artikis and

Paliouras, 2014). They are also collections of events that satisfy

certain patterns.

SASE is a complex event processing system designed for

monitoring queries over streams of RFID readings (Wu et al.,

2006). The SASE defines its own declarative event lan-

guage that combines filtering, correlation, and transformation

of events. The overall structure of the SASE language con-

tains the EVENT clause specifying event patterns, the WHERE

clause specifying qualifications and the WITHIN clause spec-

ifying window sizes. To meet the needs of RFID-enabled

monitoring applications, several operators are also defined, in-

cluding the ANY operator, the SEQ operator, the SEQ WITHOUT

operator, the Selection operator and the WITHIN opera-

tor. In order to process SASE queries, a query plan in

SASE adopts a subset of six operators: sequence scan,

sequence construction, selection, window, negation,

and transformation. Pipelined execution of the above op-

erators is used. More specifically, if a query matches a cur-

rent event and some previous events, these events will be emit-

ted from sequence scan and sequence construction immedi-

ately and form an event sequence. This event sequence is then

pipelined through the subsequence operators, and added to the

final output. To realize sequence scan, the basis of the whole

process, Non-deterministic Finite Automata (NFA) are used.

Pattern matching over streams has been studied by Agrawal

et al. (2008). It presents two new challenges: (i) compared with

languages for regular expression matching, languages for pat-

tern matching over streams are significantly richer; and (ii) the

conventional techniques for stream query processing are inad-

equate for efficient evaluation of pattern queries over streams.

In order to represent each pattern query, a new query evaluation

model is designed for processing pattern matching over RFID

streams, employing a new type of automaton that comprises a

nondeterministic finite automaton (NFA) and a match buffer,

named NFAb (Agrawal et al., 2008). Because of the power-

ful expressiveness of NFA, the semantics for the complete set

of event pattern queries can be captured by the NFAb model.

Optimizations and query evaluation plans can also be produced

and applied based on this model over event streams.

Nested CEP language called NEEL is proposed to support

the flexible nesting of AND, OR, Negation and SEQ operators at

any level (Liu et al., 2011). One NEEL query example is given

in Fig. 4, which expresses “a critical condition that after be-

ing recycled and washed, a surgery tool is being put back into

use without first being sharpened, disinfected and then checked

for quality assurance” (Liu et al., 2011). Several techniques

are also proposed to accelerate the evaluation of nested queries.

Firstly, nested event expressions will be converted into nor-

mal forms by a normalization procedure. Secondly, a group of

similar sub-expressions will be processed using prefix caching,

suffix clustering methods and a customized physical execution

strategy. Thirdly, an optimizer for optimal shared execution

method is also designed based on the idea of iterative improve-

ment. Compared with the traditional iterative nested execution,

the optimized NEEL execution is up to two orders of magnitude

faster.

Recent efforts have also been put on other aspects of complex

event processing. For example, complex event processing in a

distributed environment is studied and FUGU – an elastic allo-
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Figure 4: Nested CEP Query Example

(Adapted from the work by Liu et al. (2011))

cator for Complex Event Processing systems, is also proposed

(Heinze et al., 2013). FUGU can dynamically allocate and de-

allocate both stateless and stateful queries in order to meet the

utilization goals. To that end, FUGU relies on bin packing to al-

locate queries to hosts. Very recently, load shedding techniques

have been investigated for complex event processing under var-

ious resource constraints (He et al., 2014). Like other stream

systems, CEP systems often face bursty input data. Since over-

provisioning the system to the point where it can handle any

such burst may be uneconomical or impossible, during peak

loads a CEP system may need to “shed” portions of the load.

The key technical challenge is to selectively shed work in or-

der to eliminate the less important query results, thereby pre-

serving the more useful query results defined by some utility

function. Motivated by this, several load shedding algorithms

are designed, including CPU-bound load shedding, memory-

bound load shedding, and dual-bound load shedding (with both

CPU- and memory-bound), depending on which resource is

constrained.

6.2. Semantic Complex Event Processing

The combination of event processing and knowledge repre-

sentation can lead to novel semantic-rich event processing en-

gines (Zhou et al., 2011; Teymourian et al., 2012). These intel-

ligent event processing engines can (i) help to understand what

is happening in terms of events, (ii) state and know what re-

actions and processes it can invoke, and furthermore (iii) de-

cide what new events it can signal. The identification of critical

events and situations requires processing vast amounts of data

and meta-data within and outside the systems.

6.2.1. Semantic CEP System

Figure 5: Semantic Complex Event Processing System Overview

(Adapted from the work by Teymourian et al. (2012))

A semantic CEP system is shown in Fig. 5. Semantic models

of events can improve event processing quality by using event

meta-data in combination with ontologies and rules (i.e., knowl-

edge bases). The fusion of background knowledge with data

from an event stream can help the event processing engine to

know more about incoming events and their relationships to

other related concepts. A Knowledge Base (KB) can be used

to provide background knowledge about the events and other

non-event resources (Teymourian et al., 2012). This means that

events can be detected based on reasoning on their type hierar-

chy, temporal/spatial relationships, or their relationship to other

objects in the application domain.

The benefits of using background knowledge in complex

event processing can be seen as two major advantages over

state-of-the-art CEP systems. The first benefit is its higher ex-

pressiveness and the second one its flexibility. Expressiveness

means that an event processing system can precisely express

complex event patterns and reactions to events which can be

directly translated into business operations. Flexibility means

that a CEP system is able to integrate new business changes

into the systems in a fraction of time rather than changing the

whole event processing rules. Complex event patterns are inde-

pendent of current businesses and are defined in a higher level

of abstraction based on business strategies. When something is

changed in the business environment, it can be considered sim-

ply as an update in the background knowledge and the complex

event detection patterns which are defined based on the business

plans should not be changed.

6.2.2. Semantic Event Enrichment

The usage of background knowledge about events and their

relations to other concepts in the application domain can im-

prove the expressiveness and flexibility of CEP systems. Huge

amounts of domain background knowledge stored in external

knowledge bases can be used in combination with event pro-

cessing in order to achieve more knowledgeable complex event

processing.

An information completeness problem in semantic event pro-

cessing contexts has been identified by Hasan et al. (2013) from

a different angle. For example, while the basic information item

in an event-based system is an event, normal users often re-

quire the system to handle information that is not encoded in the

event. Such information typically comes from legacy databases

or web data sources. This requires some degrees of information

completeness or incompleteness for events to be sufficient for

tasks such as subscription matching. The process of reducing

information incompleteness is called event enrichment. Sev-

eral challenges are identified for event enrichment, including

determination of the enrichment source, retrieval of informa-

tion items from the enrichment source, finding complementary

information for an event in the enrichment source and fusion

of complementary information with the event. To address these

challenges, a model based on unifying enrichment within the

event consumer logic and a native enricher that tackles incom-

pleteness before matching are proposed (Hasan et al., 2013).
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Table 5: Comparisons of CEP Techniques.

Approach Vel Sca Dyn Het Unc Red Amb Incs Incp Sem

SASE (Jeffery et al., 2006)
√ √

RFID-Streams-Pattern-Matching (Liao et al.,

2011)

√ √ √

NEEL (Fazzinga et al., 2014)
√ √ √

FUGU (Tran et al., 2009)
√ √

Resource-Constrained-CEP (Cao et al., 2011;

Nie et al., 2012)

√ √ √ √

KB-Fusion (Teymourian et al., 2012)
√ √

Semantic-Event-Enrichment (Hasan et al.,

2013)

√ √

Approximate-Semantic-Matching (Zhou

et al., 2011)

√ √

Heterogeneous-Approximate-Semantic-

Matching (Hasan et al., 2012)

√ √ √

Note: Key elements that have been considered.

Vel: Velocity Sca: Scalability Dyn: Dynamics Het: Heterogeneity Unc: Uncertainty

Red: Redundancy Amb: Ambiguity Incs: Inconsistency Incp: Incompleteness Sem: Semantics

6.2.3. Approximate Semantic Matching

Approximate semantic matching is first studied by Zhou et al.

(2011). To achieve approximate matching, semantic selection

and inexact selection are used. More specifically, the seman-

tic selection evaluates pattern constraints based on the semantic

equivalence of attribute meanings captured by the event ontol-

ogy instead of syntactic identical attribute values, while the in-

exact selection selects events and allows a limited number of

mismatches to detect relevant patterns. A similarity function is

associated with the inexact selection to evaluate relevance be-

tween matching patterns and target patterns.

Approximate semantic matching of heterogeneous events is

also studied by Hasan et al. (2012). The motivation is that het-

erogeneous events are difficult to match in a distributed com-

puting environment as similar or closely related events may not

be described using the same words but in a semantically re-

lated form. To match all interesting events, users may have to

write many slightly different subscriptions and have to know

the exact format of all the heterogeneous events. Based on such

observation, semantic decoupling of events and user’s subscrip-

tions becomes necessary. However, after such decoupling, the

subscriptions would hardly exactly match the descriptions of

events. This indicates that approximate matching and process-

ing of events are inevitable. A model for approximate seman-

tic matching that addresses event semantic decoupling is pro-

posed. The model is evaluated using a hybrid matching ap-

proach based on both thesauri, semantic similarity and related-

ness measures. After adopting this technique, the number of

event subscriptions to achieve sufficiently precise matching re-

sults can be greatly reduced because of the decoupling between

events and user subscriptions.

7. Potential IoT Applications

As pointed out by Ashton (2009) that IoT “has the poten-

tial to change the world, just as the Internet did”. The ongoing

and/or potential IoT applications show that IoT can bring sig-

nificant changes in many domains, i.e. cities and homes, envi-

ronment monitoring, health, energy, and business, etc. IoT can

bring the ability to react to events in the physical world in an

automatic, rapid and informed manner. This also opens up new

opportunities for dealing with complex or critical situations and

enables a wide variety of business processes to be optimized. In

this section, we overview several representative domains where

IoT can make some profound changes.

7.1. Smart Cities and Homes

IoT can connect billions of smart things and can help cap-

ture information in cities. Based on IoT, cities would be-

come smarter and more efficient. Below are some examples of

promising IoT applications in future smart cities. In a modern

city, lots of digital data traces are generated there every second

via cameras and sensors of all kinds (Guinard, 2010). All this

data represents a goldmine for everyone, if people in the city

would be able to take advantage of it in an efficient and effec-

tive way. For example, IoT can facilitate resources management

issues for modern cities. Specifically, static resources (e.g. fire

stations, parking spots) and mobile resources (e.g. police cars,

fire trucks) in a city can be managed effectively using IoT tech-

nologies. Whenever events (fires, crime reports, cars looking

for parking) arise, IoT technologies would be able to quickly

match resources with events in an optimal way based on the in-

formation captured by smart things, thereby reducing cost and

saving time. Taxi drivers in the city would also be able to better

serve prospective passengers by learning passenger’s mobility

patterns and other taxi drivers’ serving behaviors through the

14



help of IoT technologies (Yuan et al., 2011). One study esti-

mated a loss of $78 billion in 2007 in the form of 4.2 billion lost

hours and 2.9 billion gallons of wasted gasoline in the United

States alone (Mathur et al., 2010). IoT could bring fundamen-

tal changes in urban street-parking management, which would

greatly benefit the whole society by reducing traffic congestion

and fuel consumption.

Security in a city is of great concerns, which can benefit a

lot from the development of IoT technologies. Losses resulted

from property crimes were estimated to be $17.2 billion in the

U.S. in 2008 (Guha et al., 2010). Current security cameras,

motion detectors, and alarm systems are not able to help track

or recover stolen property. IoT technologies can help to deter,

detect, and track personal property theft since things are inter-

connected and can interact with each other. IoT technologies

can also help improve stolen property recovery rates, and dis-

rupt stolen property distribution networks. Similarly, a network

of static and mobile sensors can be used to detect threats on city

streets and in open areas such as parks.

With IoT technologies, people can browse and manage their

homes via the Web. For example, they would be able to check

whether the light in their bedrooms is on and could turn it off by

simply clicking a button on a Web page. Similar operations and

management could be done in office environments. Plumbing

is ranked as one of the ten most frequently found problems in

homes (Lai et al., 2010). It is important to determine the spa-

tial topology of hidden water pipelines behind walls and under-

ground. In IoT, smart things in homes would be able to report

plumbing problems automatically and report to owners and/or

plumbers for efficient maintenance and repair.

7.2. Environment Monitoring

IoT technologies can also help to monitor and protect envi-

ronments thereby improving human’s knowledge about envi-

ronments. Take water as an example. Understanding the dy-

namics of bodies of water and their impact on the global en-

vironment requires sensing information over the full volume

of water. In such context, IoT technologies would be able to

provide effective approaches to study water. Also IoT could

improve water management in a city. Drinking water is becom-

ing a scarce resource around the world. In big cities, efficiently

distributing water is one of the major issues (Guinard, 2010).

Various reports show that on average 30% of drinkable water

is lost during transmission due to the aging infrastructure and

pipe failures. Further, water can be contaminated biologically

or chemically due to inefficient operation and management. In

order to effectively manage and efficiently transport water, IoT

technologies would be of great importance.

Soil contains vast ecosystems that play a key role in the

Earth’s water and nutrient cycles, but scientists cannot currently

collect the high-resolution data required to fully understand

them. Many soil sensors are inherently fragile and often pro-

duce invalid or uncalibrated data (Ramanathan et al., 2009). IoT

technologies would help to validate, calibrate, repair, or replace

sensors, allowing to use available sensors without sacrificing

data integrity and meanwhile minimizing the human resources

required.

Sound is another example where IoT technologies can help.

Sound is multidimensional, varying in intensity and spectra. So

it is difficult to quantify, e.g., it is difficult to determine what

kind of sound is noise. Further, the definitions and feelings of

noise are quite subjective. For example, some noises could be

pleasant, like flowing water, while others can be annoying, such

as car alarms, screeching breaks and people arguing. A device

has been designed and built to monitor residential noise pollu-

tion to address the above problems (Zimmerman and Robson,

2011). Firstly, noise samples from three representative houses

are used, which span the spectrum of quiet to noisy neighbor-

hoods. Secondly, a noise model is developed to characterize

residential noise. Thirdly, noise events of an entire day (24

hours) are compressed into a one minute auditory summary.

Data collection, transmission and storage requirements can be

minimized in order to utilize low-cost and low-power com-

ponents, while sufficient measurement accuracy is still main-

tained.

Intel has developed smart sensors that can warn people about

running outside when the air is polluted15. For example, if

someone is preparing to take a jog along his/her regular route,

an application on his/her smartphone pushes out a message: air

pollution levels are high in the park where he/she usually runs.

Then he/she could try a recommended route that is cleaner. Cur-

rently, many cities already have pollution and weather sensors.

They are usually located on top of buildings, far from daily hu-

man activities.

7.3. Health

In future IoT environments, an RFID-enabled information

infrastructure would be likely to revolutionize areas such as

healthcare, and pharmaceutical. For example, a healthcare en-

vironment such as a large hospital or aged care could tag all

pieces of medical equipment (e.g., scalpels, thermometers) and

drug products for inventory management. Each storage area or

patient room would be equipped with RFID readers that could

scan medical devices, drug products, and their associated cases.

Such an RFID-based infrastructure could offer a hospital un-

precedented near real-time ability to track and monitor objects

and detect anomalies (e.g., misplaced objects) as they occur.

As personal health sensors become ubiquitous, they are ex-

pected to become interoperable. This means standardized sen-

sors can wirelessly communicate their data to a device many

people already carry today (e.g., mobile phones). It is argued

by Lester et al. (2009) that one challenge in weight control is

the difficulty of tracking food calories consumed and calories

expended by activity. Then they present a system for automatic

monitoring of calories consumed using a single body-worn ac-

celerometer. To be fully benefited from such data for a large

body of people, applying IoT technologies in such area would

be a promising direction.

Mobile technology and sensors are creating ways to inexpen-

sively and continuously monitor people’s health. Doctors may

15http://www.fastcoexist.com/1680111/intels-sensors-will-warn-you-about-

running-outside-when-the-air-is-polluted
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call their clients to schedule an appointment,rather than vice-

versa, because the doctors could know their clients’ health con-

ditions in real-time. Some projects for such purpose have been

initiated. For example, EveryHeartBeat16 is a project for Body

Computing to “connect the more than 5 billion mobile phones

in the world to the health ecosystem”. In the initial stage, heart

rate monitoring is investigated. Consumers would be able to

self track their pulse and studies show heart rate monitoring

could be useful in detecting heart conditions and enabling early

diagnosis. The future goal is to include data on blood sugar

levels, and other biometrics collected via mobile devices.

7.4. Energy

Home heating is a major factor in worldwide energy use.

In IoT, home energy management applications could be built

upon embedded Web servers (Priyantha et al., 2008). Through

such online web services, people can track and manage their

home energy consumption. A system is designed by Gupta

et al. (2009) for augmenting these thermostats using just-in-

time heating and cooling based on travel-to-home distance ob-

tained from location-aware mobile phones. The system makes

use of a GPS-enabled thermostat which could lead to savings of

as much as 7%. In IoT, as things in homes would become smart

and connected to the Internet, similar energy savings could be

more effective. For example, by automatically sensing occu-

pancy and sleep patterns in a home, it would be possible to save

energy by automatically turning off the home’s HVAC (heating,

ventilation, and air conditioning) system.

Beside home heating, fuel consumption is also an important

issue. GreenGPS, a navigation service that uses participatory

sensing data to map fuel consumption on city streets, has been

designed by Ganti et al. (2010). GreenGPS would allow drivers

to find the most fuel-efficient routes for their vehicles between

arbitrary end-points. In IoT, fuel consumption would be further

reduced by enabling cars and passengers to communicate with

each other for ride sharing (Yuan et al., 2011).

7.5. Business

IoT technologies would be able to help to improve efficiency

in business and bring other impacts on business (Mattern and

Floerkemeier, 2010):

• From a commercial point of view, IoT can help increase

the efficiency of business processes and reduce costs in

warehouse logistics and in service industries. This is be-

cause more complete and necessary information can be

collected by interconnected things. owing to its huge and

profound impact on the society, IoT research and applica-

tions can also trigger new business models involving smart

things and associated services.

• From a social and political point of view, IoT technolo-

gies can provide a general increase in the quality of life

for the following reasons. Firstly, consumers and citizens

16http://join.everyheartbeat.org/

will be able to obtain more comprehensive information.

Secondly, care for aged and/or disabled people can be im-

proved with smarter assistance systems. Thirdly, safety

can be increased. For example, road safety can be im-

proved by receiving more complete and real-time traffic

and road condition information.

• From a personal point of view, new services enabled by

IoT technologies can make life more pleasant, entertain-

ing, independent and also safer. For example, business

taking advantages of technologies of search of things in

IoT can help locate lost things quickly, such as personal

belongs, pets or even other people.

Besides, take improving information handover efficiency in

a global supply chain as an example. The concept of digital

object memories (DOM) is proposed in (Stephan et al., 2010),

which can store order-related data via smart labels on the item.

Based on DOM, relevant life cycle information could be at-

tached to the product itself. Considering the potential different

stakeholders including manufacturer, distributor, retailer, and

end customer along the supply/value chain, this approach facil-

itates information handover.

Further, there are many important bits of information in an

IoT-based supply chain, such as the 5W (what, when, where,

who, which). It is also necessary to integrate them efficiently

and in real-time in other operations. The EPCIS (Electronic

Product Code Information System) network is a set of tools

and standards for tracking and sharing RFID-tagged products

in IoT. However, much of this data remains in closed networks

and is hard to integrate (Wu et al., 2013). IoT technologies

could be used to make it easier to use all this data, to integrate

it into various applications, and to build more flexible, scalable,

global application for better (even real-time) logistics.

8. Open Issues

The development of IoT technologies and applications is

merely beginning. Many new challenges and issues have not

been addressed, which require substantial efforts from both

academia and industry. In this section, we identify some key

directions for future research and development from a data-

centric perspective.

• Data Quality and Uncertainty: In IoT, as data volume in-

creases, inconsistency and redundancy within data would

become paramount issues. One of the central problems

for data quality is inconsistency detection and when data

is distributed, the detection would be far more challenging

(Fan et al., 2010). This is because inconsistency detec-

tion often requires shipping data from one site to another.

Meanwhile, inherited from RFID data and sensor data, IoT

data would be of great uncertainty, which also presents sig-

nificant challenges.

• Co-Space Data: In an IoT environment, the physical space

and the virtual (data) space co-exist, and interact simulta-

neously. Novel technologies must be developed to allow
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data to be processed and manipulated seamlessly between

the real and digital spaces (Ooi et al., 2009). To synchro-

nize data in both real and virtual worlds, large amount of

data and information will flow between co-spaces, which

pose new challenges. For example, it would be chal-

lenging to process heterogeneous data streams in order to

model and simulate real world events in the virtual world.

Besides, more intelligent processing is needed to identify

and send interesting events in the co-space to objects in the

physical world.

• Transaction Handling: When the data being updated is

spread across hundreds or thousands of networked com-

puters/smart things with differing update policies, it would

be difficult to define what the transaction is. In addition,

most of things are resource-constrained, which are typi-

cally connected to the Internet using light-weight, stateless

protocols such as CoAP (Constrained Application Proto-

col)17 and 6LoWPAN (IPv6 over Low Power Wireless Per-

sonal Area Networks)18 and accessed using RESTful Web

services. This makes transaction handling in IoT a great

challenge. As pointed out by James et al. (2009) that

the problem is that the world is changing fast, the data

representing the world is on multiple networked comput-

ers/smart things and existing database technologies cannot

manage. Techniques developed for streamed and real-time

data may provide some hints.

• Frequently Updated Timestamped Structured (FUTS)

Data: The Internet, and hence IoT, contains potentially

billions of Frequently Updated Timestamped Structured

(FUTS) data sources, such as real-time traffic reports, air

pollution detection, temperature monitoring, crops moni-

toring, etc. FUTS data sources contain states and updates

of physical world things. Current technologies are not ca-

pable in dealing with FUTS data sources (James et al.,

2009) because: (i) no data management system can easily

display FUTS past data; (ii) no efficient crawler or stor-

age engine is able to collect and store FUTS data; and (iii)

querying and delivering FUTS data is hardly supported.

All these pose great challenges for the design of novel data

management systems for FUTS data.

• Distributed and Mobile Data: In IoT, data will be increas-

ingly distributed and mobile. Different from traditional

mobile data, distributed and mobile data in IoT would be

much more highly distributed and data intensive. In the

context of interconnecting huge numbers of mobile and

smart objects, centralized data stores would not be a suit-

able tool to manage all the dynamics of mobile data pro-

duced in IoT. Thus there is a need for novel ways to man-

age distributed and mobile data efficiently and effectively

in IoT.

• Semantic Enrichment and Semantic Event Processing:

The full potentials of IoT would heavily rely on the

17http://tools.ietf.org/html/draft-ietf-core-coap-18
18http://tools.ietf.org/wg/6lowpan

progress of semantic Web. This is because things and ma-

chines should play a much more important role than hu-

mans in IoT to process and understand data. This calls

for new research in Semantic technologies. For example,

there are increasing efforts in building public knowledge

bases (such as DBpedia, FreeBase, Linked Open Data

Cloud, etc.). But how these knowledge bases can be effec-

tively used to add to the understanding of raw data coming

from sensor data streams and other types of data streams?

To resolve this challenge, semantic enrichment of sensing

data is a promising research direction. Further, consider

the potential excessively large amount of subscriptions

to IoT data. To produce proper semantic enrichment to

meet different enrichment needs from different subscribers

poses great challenges. Finally, how to effectively incorpo-

rate semantic enrichment techniques with semantic event

processing to provide much better expressiveness in event

processing is still at its initial stage. This will also demand

a large amount of research efforts.

• Mining: Data mining aims to facilitate the exploration

and analysis of large amounts of data, which can help to

extract useful information for huge volume of IoT data.

Data mining challenges may include extraction of tem-

poral characteristics from sensor data streams, event de-

tection from multiple data streams, data stream classifica-

tion, activity discovery and recognition from sensor data

streams. Besides, clustering and table summarization in

large data sets, mining large (data, information or social)

networks, sampling, and information extraction from the

Web are also great challenges in IoT.

• Knowledge Discovery: Knowledge discovery is the pro-

cess of extracting useful knowledge from data. This is

essential especially when connected things populate their

data to the Web. The following issues related to knowl-

edge discovery in IoT have been identified by Weikum

(2011): (i) automatic extraction of relational facts from

natural-language text and multi-modal contexts; (ii) large-

scale gathering of factual-knowledge candidates and their

reconciliation into comprehensive knowledge bases; (iii)

reasoning on uncertain hypotheses, for knowledge discov-

ery and semantic search; and (iv) deep and real-time ques-

tion answering, e.g., to enable computers to win quiz game

shows.

• Security: Due to the proliferation of embedded devices

in IoT, effective device security mechanisms are essential

to the development of IoT technologies and applications.

National Intelligence Council (Anonymous, 2008) argues

that, to the extent that everyday objects become informa-

tion security risks, the IoT could distribute those risks far

more widely than the Internet has to date. For example,

RFID security presents many challenges. Potential solu-

tions should consider aspects from hardware and wireless

protocol security to the management, regulation and shar-

ing of collected RFID data (Welbourne et al., 2009). Be-

sides, it is argued by Lagesse et al. (2009) that there is still
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no generic framework for deploying and extending tradi-

tional security mechanisms over a variety of pervasive sys-

tems. Regarding security concerns of the network layer, it

is suggested by Kounavis et al. (2010) that the Internet can

be gradually encrypted and authenticated based on the ob-

servations that the recent advances in implementation of

cryptographic algorithms have made general purpose pro-

cessors capable of encrypting packets at high rates. But

how to generalize such algorithms to IoT would be chal-

lenging as things in IoT normally only maintain low trans-

mission rates and connections are usually intermittent.

• Privacy: Privacy protection is a serious challenge in IoT.

One of the fundamental problems is the lack of a mecha-

nism to help people expose appropriate amounts of their

identity information. Embedded sensing is becoming

more and more prevalent on personal devices such as mo-

bile phones and multi-media players. Since people are

typically wearing and carrying devices capable of sensing,

details such as activity, location, and environment could

become available to other people. Hence, personal sens-

ing can be used to detect their physical activities and bring

about privacy concerns (Klasnja et al., 2009).

• Social Concerns: Since IoT connects everyday objects to

the Internet, social concerns would become a hot topic in

the development of IoT. Further, online social networks

with personal things information may incur social con-

cerns as well, such as disclosures of personal activities and

hobbies, etc. Appropriate economic and legal conditions

and a social consensus on how the new technical opportu-

nities in IoT should be used also represents a substantial

task for the future (Mattern and Floerkemeier, 2010).

9. Summary

It is predicted that the next generation of the Internet will be

comprised of trillions of connected computing nodes at a global

scale. Through these nodes, everyday objects in the world can

be identified, connected to the Internet and take decisions inde-

pendently. In this context, Internet of Things (IoT) is consid-

ered a new revolution of the Internet. In IoT, the possibility of

seamlessly merging the real and the virtual worlds, through the

massive deployment of embedded devices, opens up many new

and exciting directions for both research and development. In

this article, we have provided an overview of some key research

areas of IoT, specifically from a data-centric perspective. It also

presents a number of fundamental issues to be resolved before

we can fully realize the promise of IoT applications. This ar-

ticle covers investigations on data models, data storage, stream

processing, search and event processing. The most relevant ap-

plication fields have also been reviewed.

Over the last few years, the Internet of Things has gained mo-

mentum and is becoming a rapidly expanding area of research

and business. Many efforts from researchers, vendors and gov-

ernments have been devoted to creating and developing novel

IoT applications. Along with the current research efforts, we

encourage more insights into the problems of this promising

technology, and more efforts in addressing the open research

issues identified in this article.
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