38 research outputs found

    Plasma polymers in the nanostructured and nanocomposite coatings

    Get PDF
    Název prace: Plazmové polymery v nanostrukturovaných a nanokompozitních vrstvách Autor: Artem Shelemin Katedra: Katedra makromolekulárni fyziky Vedoucí doktorské práce: Prof. RNDr. Hynek Biederman, DrSc. Abstract: V této práci jsou shrnuty výsledky dosažené b hem mého studia nanostrukturovaných a nanokompozitních vrstev plazmových polymer . Bylo vyvinuto a studováno n kolik alternativních experimentálních postup , které využívají plazmové technologie jak za sníženého tlaku (plynové agrega ní zdroje, depozice pod velkým úhlem), tak i za atmosférického tlaku (dielektrický bariérový výboj a plazmová tryska). V rámci práce byly p ipravovány nano ástice kov a oxid kov Ti/TiOx a AlOx i nano ástice plazmových polymer SiO-x(CH) a Nylon 6,6. Byla provedena podrobná charakterizace morfologie p ipravovaných povlak pomocí metod AFM a SEM i jejich chemického složení, které bylo studováno pomocí metod XPS a FTIR. Klí ová slova: plazmový polymer, nano ástice, tenká vrstva, nanostrukturyTitle: Plasma polymers in the nanostructured and nanocomposite coatings Author: Artem Shelemin Department / Institute: Department of the Macromolecular Physics Supervisor of the doctoral thesis: Prof. RNDr. Hynek Biederman, DrSc. Abstract: The thesis represents the main results of my research work aimed to study nanostructured and nanocomposite films of plasma polymer. A few alternative experimental approaches were developed and investigated which ranged from low pressure (gas aggregation cluster sources and glancing angle deposition) to atmospheric pressure (dielectric barrier discharge and plasma jet) plasma processing. The metal/metal oxide Ti/TiOx, AlOx and plasma polymer SiOx(CH), Nylon 6,6 nanoparticles were prepared. The analysis of morphology of deposited plasma polymer coatings was performed by AFM and SEM. The chemical composition of films was studied by XPS and FTIR. Keywords: plasma polymer, nanoparticle, thin film, nanostructuresKatedra makromolekulární fyzikyDepartment of Macromolecular PhysicsMatematicko-fyzikální fakultaFaculty of Mathematics and Physic

    Plasma polymers in the nanostructured and nanocomposite coatings

    Get PDF
    Title: Plasma polymers in the nanostructured and nanocomposite coatings Author: Artem Shelemin Department / Institute: Department of the Macromolecular Physics Supervisor of the doctoral thesis: Prof. RNDr. Hynek Biederman, DrSc. Abstract: The thesis represents the main results of my research work aimed to study nanostructured and nanocomposite films of plasma polymer. A few alternative experimental approaches were developed and investigated which ranged from low pressure (gas aggregation cluster sources and glancing angle deposition) to atmospheric pressure (dielectric barrier discharge and plasma jet) plasma processing. The metal/metal oxide Ti/TiOx, AlOx and plasma polymer SiOx(CH), Nylon 6,6 nanoparticles were prepared. The analysis of morphology of deposited plasma polymer coatings was performed by AFM and SEM. The chemical composition of films was studied by XPS and FTIR. Keywords: plasma polymer, nanoparticle, thin film, nanostructure

    Conference on Measuring Techniques and State-Sponsored Metrological Inspection

    No full text

    Structure and Stability of C:H:O Plasma Polymer Films Co-Polymerized Using Dimethyl Carbonate

    No full text
    C:H:O plasma polymer films (PPFs) were deposited by means of plasma-enhanced chemical vapour deposition using the non-toxic, biodegradable organic compound dimethyl carbonate (DMC) at various plasma powers and pressures in order to control the degradation properties related to the carbonate ester group. Coating properties using pure DMC monomer vapours were compared to co-polymerized films from gaseous mixtures of DMC with either ethylene (C2H4) or carbon dioxide (CO2) affecting deposition rate and chemical composition. C:H:O film properties were found to depend primarily on the amount of oxygen in the plasma. To investigate the PPF stability during aging, changes in the composition and properties were studied during their storage both in air and in distilled water over extended periods up to 5 months. It was shown that aging of the films is mostly due to oxidation of the plasma polymer matrix yielding slow degradation and decomposition. The aging processes and their rate are dependent on the intrinsic amount of oxygen in the as-prepared C:H:O films which in turn depends on the experimental conditions and the working gas mixture. Adjustable film properties were mainly attained using a pure DMC plasma considering both gas phase and surface processes. It is thus possible to prepare C:H:O PPFs with controllable degradability both in air and in water

    Vliv průměru výstupní štěrbiny na měděné nanočástice připravené agregačním zdrojem

    No full text
    Agregační zdroj (GAS) byl použit pro přípravu měděných nanočástic. Změnou průměru výstupní štěrbiny agregační komory jsme byli schopni izolovat a zkoumat vliv průtoku pracovního plynu při konstantním tlaku v agregační komoře. Ukazujeme, že konvenční přístup změny tlaku pomocí změny průtoku (při konstantním průměru štěrbiny) neovlivňuje výrazně velikost nanočástic. Nicméně pokud je tlak držen konstantní, změna průtoku má silný vliv. Na základě teoretické studie navrhujeme, že rozhodujícím parametrem je poměr tlaku k průtoku. Tento poměr určuje dobu zadržení nanočástic v agregační komoře (a tudíž i čas, který mají k dispozici pro růst) a je konstantní pro konstantní průměr výstupní štěrbiny. Když se ale průměr štěrbiny zmenší, tento poměr se zvětší, což poskytne nanočásticím více času a umožní jim více narůst. Kromě velikosti nanočástic ovlivňuje velikost štěrbiny i hmotnostní tok a jeho úhlové rozdělení.Gas-aggregation source (GAS) was used to prepare Cu nanoparticles. By changing the diameter of the exit orifice of the aggregation chamber, we were able to isolate and investigate the effect of the flow rate of the working gas at a constant pressure inside the aggregation chamber. We show that the conventional approach of changing pressure by adjusting the flow rate (at a constant orifice diameter) does not significantly influence the nanoparticle size. However, when the pressure is held constant, changing the flow rate has a notable effect. Based on a theoretical study, we suggest that the determining parameter which needs to be considered is the pressure to flow rate ratio. This ratio determines the residence time of the nanoparticles inside the aggregation chamber (and therefore the time available for them to grow) and is constant for a constant orifice diameter. Decreasing the orifice diameter, however, increases the pressure to flow rate ratio, which gives the nanoparticles longer time inside the aggregation chamber and allows them to grow larger. Apart from their size, the orifice diameter also influences the mass flux and its angular distribution
    corecore