18 research outputs found
Progression of Pathogenic Events in Cynomolgus Macaques Infected with Variola Virus
Smallpox, caused by variola virus (VARV), is a devastating human disease that affected millions worldwide until the virus was eradicated in the 1970 s. Subsequent cessation of vaccination has resulted in an immunologically naive human population that would be at risk should VARV be used as an agent of bioterrorism. The development of antivirals and improved vaccines to counter this threat would be facilitated by the development of animal models using authentic VARV. Towards this end, cynomolgus macaques were identified as adequate hosts for VARV, developing ordinary or hemorrhagic smallpox in a dose-dependent fashion. To further refine this model, we performed a serial sampling study on macaques exposed to doses of VARV strain Harper calibrated to induce ordinary or hemorrhagic disease. Several key differences were noted between these models. In the ordinary smallpox model, lymphoid and myeloid hyperplasias were consistently found whereas lymphocytolysis and hematopoietic necrosis developed in hemorrhagic smallpox. Viral antigen accumulation, as assessed immunohistochemically, was mild and transient in the ordinary smallpox model. In contrast, in the hemorrhagic model antigen distribution was widespread and included tissues and cells not involved in the ordinary model. Hemorrhagic smallpox developed only in the presence of secondary bacterial infections – an observation also commonly noted in historical reports of human smallpox. Together, our results support the macaque model as an excellent surrogate for human smallpox in terms of disease onset, acute disease course, and gross and histopathological lesions
A Modeling Pattern for Layered System Interfaces
Communications between systems is often initially represented at a single, high level of abstraction, a link between components. During design evolution it is usually necessary to elaborate the interface model, defining it from several different, related viewpoints and levels of abstraction. This paper presents a pattern to model such multi-layered interface architectures simply and efficiently, in a way that supports expression of technical complexity, interfaces and behavior, and analysis of complexity. Each viewpoint and layer of abstraction has its own properties and behaviors. System elements are logically connected both horizontally along the communication path, and vertically across the different layers of protocols. The performance of upper layers depends on the performance of lower layers, yet the implementation of lower layers is intentionally opaque to upper layers. Upper layers are hidden from lower layers except as sources and sinks of data. The system elements may not be linked directly at each horizontal layer but only via a communication path, and end-to-end communications may depend on intermediate components that are hidden from them, but may need to be shown in certain views and analyzed for certain purposes. This architectural model pattern uses methods described in ISO 42010, Recommended Practice for Architectural Description of Software-intensive Systems and CCSDS 311.0-M-1, Reference Architecture for Space Data Systems (RASDS). A set of useful viewpoints and views are presented, along with the associated modeling representations, stakeholders and concerns. These viewpoints, views, and concerns then inform the modeling pattern. This pattern permits viewing the system from several different perspectives and at different layers of abstraction. An external viewpoint treats the systems of interest as black boxes and focuses on the applications view, another view exposes the details of the connections and other components between the black boxes. An internal view focuses on the implementation within the systems of interest, either showing external interface bindings and specific standards that define the communication stack profile or at the level of internal behavior. Orthogonally, a horizontal view isolates a single layer and a vertical viewpoint shows all layers at a single interface point between the systems of interest. Each of these views can in turn be described from both behavioral and structural viewpoints
Climate-smart landscapes: opportunities and challenges for integrating adaptation and mitigation in tropical agriculture
Addressing the global challenges of climate change, food security, and poverty alleviation requires enhancing the adaptive capacity and mitigation potential of agricultural landscapes across the tropics. However, adaptation and mitigation activities tend to be approached separately due to a variety of technical, political, financial, and socioeconomic constraints. Here, we demonstrate that many tropical agricultural systems can provide both mitigation and adaptation benefits if they are designed and managed appropriately and if the larger landscape context is considered. Many of the activities needed for adaptation and mitigation in tropical agricultural landscapes are the same needed for sustainable agriculture more generally, but thinking at the landscape scale opens a new dimension for achieving synergies. Intentional integration of adaptation and mitigation activities in agricultural landscapes offers significant benefits that go beyond the scope of climate change to food security, biodiversity conservation, and poverty alleviation. However, achieving these objectives will require transformative changes in current policies, institutional arrangements, and funding mechanisms to foster broad-scale adoption of climate-smart approaches in agricultural landscapes
Quantitative comparison of DNA methylation assays for biomarker development and clinical applications
The BLUEPRINT consortiumDNA methylation patterns are altered in numerous diseases and often correlate with clinically relevant information such as disease subtypes, prognosis and drug response. With suitable assays and after validation in large cohorts, such associations can be exploited for clinical diagnostics and personalized treatment decisions. Here we describe the results of a community-wide benchmarking study comparing the performance of all widely used methods for DNA methylation analysis that are compatible with routine clinical use. We shipped 32 reference samples to 18 laboratories in seven different countries. Researchers in those laboratories collectively contributed 21 locus-specific assays for an average of 27 predefined genomic regions, as well as six global assays. We evaluated assay sensitivity on low-input samples and assessed the assays' ability to discriminate between cell types. Good agreement was observed across all tested methods, with amplicon bisulfite sequencing and bisulfite pyrosequencing showing the best all-round performance. Our technology comparison can inform the selection, optimization and use of DNA methylation assays in large-scale validation studies, biomarker development and clinical diagnostics.This work was performed in the context of the BLUEPRINT project (European Union’s Seventh Framework Programme grant agreement 282510), which funded the study logistics and the integrative data analysis. The assay costs were paid by the contributing laboratories using institutional funds and the following grants: BBSRC BB/G020930/1, BBSRC BB/G020930/1, BMBF 01KU1001A, BMBF 01KU1002A, BMBF 01KU1216F, EU-FP7 282510, FWF I 1575-B19, NHMRC 1063559, NHMRC 1088144 and the DKFZ Graduate School.Peer Reviewe