9 research outputs found

    Reducing the environmental impact of surgery on a global scale: systematic review and co-prioritization with healthcare workers in 132 countries

    Get PDF
    Abstract Background Healthcare cannot achieve net-zero carbon without addressing operating theatres. The aim of this study was to prioritize feasible interventions to reduce the environmental impact of operating theatres. Methods This study adopted a four-phase Delphi consensus co-prioritization methodology. In phase 1, a systematic review of published interventions and global consultation of perioperative healthcare professionals were used to longlist interventions. In phase 2, iterative thematic analysis consolidated comparable interventions into a shortlist. In phase 3, the shortlist was co-prioritized based on patient and clinician views on acceptability, feasibility, and safety. In phase 4, ranked lists of interventions were presented by their relevance to high-income countries and low–middle-income countries. Results In phase 1, 43 interventions were identified, which had low uptake in practice according to 3042 professionals globally. In phase 2, a shortlist of 15 intervention domains was generated. In phase 3, interventions were deemed acceptable for more than 90 per cent of patients except for reducing general anaesthesia (84 per cent) and re-sterilization of ‘single-use’ consumables (86 per cent). In phase 4, the top three shortlisted interventions for high-income countries were: introducing recycling; reducing use of anaesthetic gases; and appropriate clinical waste processing. In phase 4, the top three shortlisted interventions for low–middle-income countries were: introducing reusable surgical devices; reducing use of consumables; and reducing the use of general anaesthesia. Conclusion This is a step toward environmentally sustainable operating environments with actionable interventions applicable to both high– and low–middle–income countries

    Effect of angiotensin-converting enzyme inhibitor and angiotensin receptor blocker initiation on organ support-free days in patients hospitalized with COVID-19

    Get PDF
    IMPORTANCE Overactivation of the renin-angiotensin system (RAS) may contribute to poor clinical outcomes in patients with COVID-19. Objective To determine whether angiotensin-converting enzyme (ACE) inhibitor or angiotensin receptor blocker (ARB) initiation improves outcomes in patients hospitalized for COVID-19. DESIGN, SETTING, AND PARTICIPANTS In an ongoing, adaptive platform randomized clinical trial, 721 critically ill and 58 non–critically ill hospitalized adults were randomized to receive an RAS inhibitor or control between March 16, 2021, and February 25, 2022, at 69 sites in 7 countries (final follow-up on June 1, 2022). INTERVENTIONS Patients were randomized to receive open-label initiation of an ACE inhibitor (n = 257), ARB (n = 248), ARB in combination with DMX-200 (a chemokine receptor-2 inhibitor; n = 10), or no RAS inhibitor (control; n = 264) for up to 10 days. MAIN OUTCOMES AND MEASURES The primary outcome was organ support–free days, a composite of hospital survival and days alive without cardiovascular or respiratory organ support through 21 days. The primary analysis was a bayesian cumulative logistic model. Odds ratios (ORs) greater than 1 represent improved outcomes. RESULTS On February 25, 2022, enrollment was discontinued due to safety concerns. Among 679 critically ill patients with available primary outcome data, the median age was 56 years and 239 participants (35.2%) were women. Median (IQR) organ support–free days among critically ill patients was 10 (–1 to 16) in the ACE inhibitor group (n = 231), 8 (–1 to 17) in the ARB group (n = 217), and 12 (0 to 17) in the control group (n = 231) (median adjusted odds ratios of 0.77 [95% bayesian credible interval, 0.58-1.06] for improvement for ACE inhibitor and 0.76 [95% credible interval, 0.56-1.05] for ARB compared with control). The posterior probabilities that ACE inhibitors and ARBs worsened organ support–free days compared with control were 94.9% and 95.4%, respectively. Hospital survival occurred in 166 of 231 critically ill participants (71.9%) in the ACE inhibitor group, 152 of 217 (70.0%) in the ARB group, and 182 of 231 (78.8%) in the control group (posterior probabilities that ACE inhibitor and ARB worsened hospital survival compared with control were 95.3% and 98.1%, respectively). CONCLUSIONS AND RELEVANCE In this trial, among critically ill adults with COVID-19, initiation of an ACE inhibitor or ARB did not improve, and likely worsened, clinical outcomes. TRIAL REGISTRATION ClinicalTrials.gov Identifier: NCT0273570

    Physiologic Effects of Exogenous Dextrose in Murine Klebsiella pneumoniae Sepsis Vary by Route of Provision

    No full text
    Sepsis is characterized by a dysregulated immune response to infection. Nutrition is important in the care of septic patients, but the effects of specific nutrients on inflammation in sepsis are not well defined. Our prior work has shown benefits from early enteral dextrose infusion in a preclinical endotoxemia model of sepsis. In the current study, we extend our initial work to examine the effects of dextrose infusions, varying by route of administration, on inflammation and glycemic control in a more clinically relevant and translational model of Klebsiella pneumoniae (KP) bacteremia. Ten-week old C57BL6/J male mice (n = 31) underwent the implantation of indwelling vascular catheters, followed by inoculation with oropharyngeal KP. The mice were randomized 24 h after inoculation to (1) intravenous (IV) dextrose, (2) enteral dextrose, or (3) enteral saline (control) to study the effects on systemic inflammation, hemodynamics, and glycemic control. At 72 h, 77% of the control mice died, whereas IV dextrose induced 100% mortality, associated with increased inflammation, hyperglycemia, and hypotension. Enteral dextrose reduced mortality to 27%, promoted euglycemia, and reduced inflammation compared to IV dextrose. We conclude, in a bacteremic model of sepsis, that enteral (but not IV) dextrose administration is protective, suggesting that the route of nutrient support influences inflammation in sepsis

    Early Initiation of Low-Level Parenteral Dextrose Induces an Accelerated Diabetic Phenotype in Septic C57BL/6J Mice

    No full text
    Development of hyperglycemia during sepsis is associated with increased morbidity and mortality. Nutritional support is common practice in the intensive care unit, but the metabolic effects are not well understood. The purpose of this study is to determine the effect of early low level calorie provision on the development of hyperglycemia in a clinically relevant murine model of sepsis. C57BL/6J mice un-derwent femoral arterial and venous catheterization followed by cecal ligation and puncture (CLP) or sham surgery and low-dose intravenous dextrose or saline infusion. Blood glucose (BG), plasma insulin, and cytokines were measured after 24 hours. Additional septic mice underwent hyperinsulinemic euglycemic clamps or received intravenous insulin concurrent with dextrose to determine whole body insulin sensitivity and test the efficacy of insulin to reverse hyperglycemia. Neither dextrose infusion nor CLP alone induced hyperglycemia. Early initiation of low level dextrose in septic mice produced a variable glycemic response; 49% maintained euglycemia (BGThe accepted manuscript in pdf format is listed with the files at the bottom of this page. The presentation of the authors' names and (or) special characters in the title of the manuscript may differ slightly between what is listed on this page and what is listed in the pdf file of the accepted manuscript; that in the pdf file of the accepted manuscript is what was submitted by the author

    Stimulation of the endogenous incretin glucose-dependent insulinotropic peptide by enteral dextrose improves glucose homeostasis and inflammation in murine endotoxemia.

    No full text
    Loss of glucose homeostasis during sepsis is associated with increased organ dysfunction and higher mortality. Novel therapeutic strategies to promote euglycemia in sepsis are needed. We have previously shown that early low-level intravenous (IV) dextrose suppresses pancreatic insulin secretion and induces insulin resistance in septic mice, resulting in profound hyperglycemia and worsened systemic inflammation. In this study, we hypothesized that administration of low-level dextrose via the enteral route would stimulate intestinal incretin hormone production, potentiate insulin secretion in a glucose-dependent manner, and thereby improve glycemic control in the acute phase of sepsis. We administered IV or enteral dextrose to 10-week-old male C57BL/6J mice exposed to bacterial endotoxin and measured incretin hormone release, glucose disposal, and proinflammatory cytokine production. Compared with IV administration, enteral dextrose increased circulating levels of the incretin hormone glucose-dependent insulinotropic peptide (GIP) associated with increased insulin release and insulin sensitivity, improved mean arterial pressure, and decreased proinflammatory cytokines in endotoxemic mice. Exogenous GIP rescued glucose metabolism, improved blood pressure, and increased insulin release in endotoxemic mice receiving IV dextrose, whereas pharmacologic inhibition of GIP signaling abrogated the beneficial effects of enteral dextrose. Thus, stimulation of endogenous GIP secretion by early enteral dextrose maintains glucose homeostasis and attenuates the systemic inflammatory response in endotoxemic mice and may provide a therapeutic target for improving glycemic control and clinical outcomes in patients with sepsis

    Early initiation of low-level parenteral dextrose induces an accelerated diabetic phenotype in septic C57BL/6J mice

    No full text
    Development of hyperglycemia during sepsis is associated with increased morbidity and mortality. Nutritional support is common practice in the intensive care unit, but the metabolic effects are not well understood. The purpose of this study is to determine the effect of early low-level calorie provision on the development of hyperglycemia in a clinically relevant murine model of sepsis. C57BL/6J mice underwent femoral arterial and venous catheterization followed by cecal ligation and puncture (CLP) or sham surgery and low-dose intravenous dextrose or saline infusion. Blood glucose, plasma insulin, and cytokines were measured after 24 h. Additional septic mice underwent hyperinsulinemic-euglycemic clamps or received intravenous insulin concurrent with dextrose to determine whole-body insulin sensitivity and test the efficacy of insulin to reverse hyperglycemia. Neither dextrose infusion nor CLP alone induced hyperglycemia. Early initiation of low-level dextrose in septic mice produced a variable glycemic response: 49% maintained euglycemia (blood glucose <200) and 27% developed severe hyperglycemia (blood glucose≥600). Hyperglycemia was associated with increased inflammation and reduced insulin secretion and sensitivity compared with control mice or CLP mice maintaining euglycemia. Insulin prevented the progression to severe hyperglycemia but was ineffective in reestablishing glycemic control once hyperglycemia had developed. In conclusion, early initiation of clinically relevant low-level dextrose (~20% daily caloric requirements) precipitated hyperglycemia akin to an acute diabetic phenotype in septic mice characterized by decreased insulin sensitivity, decreased insulin secretion, and an increased inflammatory response

    Association of the systemic host immune response with acute hyperglycemia in mechanically ventilated septic patients.

    No full text
    Hyperglycemia during sepsis is associated with increased organ dysfunction and higher mortality. The role of the host immune response in development of hyperglycemia during sepsis remains unclear. We performed a retrospective analysis of critically ill adult septic patients requiring mechanical ventilation (n = 153) to study the relationship between hyperglycemia and ten markers of the host injury and immune response measured on the first day of ICU admission (baseline). We determined associations between each biomarker and: (1) glucose, insulin, and c-peptide levels at the time of biomarker collection by Pearson correlation; (2) average glucose and glycemic variability in the first two days of ICU admission by linear regression; and (3) occurrence of hyperglycemia (blood glucose>180mg/dL) by logistic regression. Results were adjusted for age, pre-existing diabetes mellitus, severity of illness, and total insulin and glucocorticoid dose. Baseline plasma levels of ST2 and procalcitonin were positively correlated with average blood glucose and glycemic variability in the first two days of ICU admission in unadjusted and adjusted analyses. Additionally, higher baseline ST2, IL-1ra, procalcitonin, and pentraxin-3 levels were associated with increased risk of hyperglycemia. Our results suggest associations between the host immune response and hyperglycemia in critically ill septic patients particularly implicating the interleukin-1 axis (IL-1ra), the interleukin-33 axis (ST2), and the host response to bacterial infections (procalcitonin, pentraxin-3)

    Bidirectional relationship between cognitive function and pneumonia.

    No full text
    RationaleRelationships between chronic health conditions and acute infections remain poorly understood. Preclinical studies suggest crosstalk between nervous and immune systems.ObjectivesTo determine bidirectional relationships between cognition and pneumonia.MethodsWe conducted longitudinal analyses of a population-based cohort over 10 years. We determined whether changes in cognition increase risk of pneumonia hospitalization by trajectory analyses and joint modeling. We then determined whether pneumonia hospitalization increased risk of subsequent dementia using a Cox model with pneumonia as a time-varying covariate.Measurements and main resultsOf the 5,888 participants, 639 (10.9%) were hospitalized with pneumonia at least once. Most participants had normal cognition before pneumonia. Three cognition trajectories were identified: no, minimal, and severe rapid decline. A greater proportion of participants hospitalized with pneumonia were on trajectories of minimal or severe decline before occurrence of pneumonia compared with those never hospitalized with pneumonia (proportion with no, minimal, and severe decline were 67.1%, 22.8%, and 10.0% vs. 76.0%, 19.3%, and 4.6% for participants with and without pneumonia, respectively; P &lt; 0.001). Small subclinical changes in cognition increased risk of pneumonia, even in those with normal cognition and physical function before pneumonia (β = -0.02; P &lt; 0.001). Participants with pneumonia were subsequently at an increased risk of dementia (hazard ratio, 2.24 [95% confidence interval, 1.62-3.11]; P = 0.01). Associations were independent of demographics, health behaviors, other chronic conditions, and physical function. Bidirectional relationship did not vary based on severity of disease, and similar associations were noted for those with severe sepsis and other infections.ConclusionsA bidirectional relationship exists between pneumonia and cognition and may explain how a single episode of infection in well-appearing older individuals accelerates decline in chronic health conditions and loss of functional independence

    Effect of Antiplatelet Therapy on Survival and Organ Support–Free Days in Critically Ill Patients With COVID-19

    No full text
    International audienc
    corecore