163 research outputs found

    Rapid interrogation of the physical and chemical characteristics of salbutamol sulphate aerosol from a pressurised metered-dose inhaler (pMDI)

    Get PDF
    Individual micron-sized solid particles from a Salamols pharmaceutical inhaler are stably captured in air using an optical trap for the first time. Raman spectroscopy of the levitated particles allows online interrogation of composition and deliquescent phase change within a high humidity environment that mimics the particle’s travel from inhaler to lun

    Solid flux in travelling fluidized bed operating in square-nosed slugging regime

    Get PDF
    The performance of gas-fluidized bed reactors depends significantly on their hydrodynamics. Among the important properties that dictate the characteristics of a gas-fluidized bed, local solid flux plays a significant role, influencing vital parameters such as bed-to-surface heat exchange and solid circulation rate. Developing techniques that can provide accurate measurements of solid flux is extremely important for: 1) assessing the accuracy of other measurement techniques applicable to industrial units, and 2) validation of CFD models. Comparison of different measurement techniques that provide similar hydrodynamic information is helpful in assessing the errors associated with each methodology. Most measurement techniques for obtaining solid flux in gas-fluidized beds are based on intrusive probes that can simultaneously measure solid velocity and voidage. Previously (1), the novel travelling fluidized bed (TFB) was operated to determine particle velocity from radioactive particle tracking (RPT), positron emission particle tracking (PEPT) and borescopy with silica sand particles of mean diameter 292 ÎŒm at superficial gas velocities from 0.4 to 0.6 m/s. In this study, the TFB, operated under identical conditions, was deployed to compare RPT and PEPT for the investigation of solid flux in square-nosed slugging. Both techniques provided solid flux data of the same order, but there were significant quantitative differences. Differing physical properties of tracer particles and the bed material, and differences in the tracer localization techniques are among the factors that contributed to the observed discrepancies. The results provide useful insights on the merits and challenges associated with advanced techniques for measuring solids flux in gas-fluidized beds. REFERENCES S. Tebianian, K. Dubrawski, N. Ellis, R. A. Cocco, R. Hays, S.B.R. Karri, T. W. Leadbeater, D.J. Parker, J. Chaouki, R. Jafari, P. Garcia-Trinanes, J.P.K. Seville, J.R. Grace. Comparison of Particle Velocity Measurement Techniques in a Fluidized Bed Operating in the Square-Nosed Slugging Flow Regime. Powder Technol., 2015. doi:http://dx.doi.org/10.1016/j.powtec.2015.08.040

    Determination of Psychoactive Mitragynine Drug in Suspected Kratom Species Collected from Various Geographical Areas in the Philippines: A Pilot Study on Existing Local Plant-based New Psychoactive Su

    Get PDF
    Kratom is a tropical tree indigenous to South East Asian countries and has been traditionally used by natives to increase work efficiency and treat selected illnesses. However, the United Nations Office on Drugs and Crime (UNODC) classified kratom, Mitragyna speciose, as a plant-based New Psychoactive Substance (NPS) that must be monitored worldwide, due to increasing reports of abuse. Many countries, including the Philippines, do not put restrictions on the said plant species including its major psychoactive drug, mitragynine. Under this prevailing provision, a research exploration was carried out to determine the distribution of kratom trees, locally known as “mambog”, in the Philippines and authenticate species identity of collected specimens through chemical determination of mitragynine and DNA analysis. Various samples, specifically leaves, twigs, barks and roots, from claimed kratom species in selected regions of Luzon and the Mindanao Islands of the Philippines were sampled and preserved accordingly before subjecting them to instrumental analysis using Gas-Chromatograph Mass Spectrometer (GC-MS) and DNA barcoding. During the field exploration, it was well documented that claimed kratom trees are mostly present in wetland areas at low altitudes, and sometimes co-exist with local bangkal (genus Nauclea) trees. Interestingly, while locals identified some of the collected species as kratom through botanical assessment, mitragynine was not detected in some selected sampling sites. Remarkably, among tree parts collected, only leaves and twigs showed evidence of mitragynine suggesting further disparity among kratom tree parts

    The Rise of the Resilient Local Authority?

    Get PDF
    The term resilience is increasingly being utilised within the study of public policy to depict how individuals, communities and organisations can adapt, cope, and ‘bounce back’ when faced with external shocks such as climate change, economic recession and cuts in public expenditure. In focussing on the local dimensions of the resilience debate, this article argues that the term can provide useful insights into how the challenges facing local authorities in the UK can be reformulated and reinterpreted. The article also distinguishes between resilience as ‘recovery’ and resilience as ‘transformation’, with the latter's focus on ‘bouncing forward’ from external shocks seen as offering a more radical framework within which the opportunities for local innovation and creativity can be assessed and explained. While also acknowledging some of the weaknesses of the resilience debate, the dangers of conceptual ‘stretching’, and the extent of local vulnerabilities, the article highlights a range of examples where local authorities – and crucially, local communities – have enhanced their adaptive capacity, within existing powers and responsibilities. From this viewpoint, some of the barriers to the development of resilient local government are not insurmountable, and can be overcome by ‘digging deep’ to draw upon existing resources and capabilities, promoting a strategic approach to risk, exhibiting greater ambition and imagination, and creating space for local communities to develop their own resilience

    Poly(Glycerol Adipate-co-ω-Pentadecalactone) Spray-Dried Microparticles as Sustained Release Carriers for Pulmonary Delivery

    Get PDF
    Purpose The aim of this work was to optimize biodegradable polyester poly(glycerol adipate-co-ω-pentadecalactone), PGA-co-PDL, microparticles as sustained release (SR) carriers for pulmonary drug delivery. Methods Microparticles were produced by spray drying directly from double emulsion with and without dispersibility enhancers ( L -arginine and L -leucine) (0.5–1.5%w/w) using sodium fluorescein (SF) as a model hydrophilic drug. Results Spray-dried microparticles without dispersibility enhancers exhibited aggregated powders leading to low fine particle fraction (%FPF) (28.79 ± 3.24), fine particle dose (FPD) (14.42 ± 1.57 ÎŒg), with a mass median aerodynamic diameter (MMAD) 2.86 ± 0.24 ÎŒm. However, L -leucine was significantly superior in enhancing the aerosolization performance ( L- arginine:%FPF 27.61 ± 4.49–26.57 ± 1.85; FPD 12.40 ± 0.99–19.54 ± 0.16 ÎŒg and MMAD 2.18 ± 0.35–2.98 ± 0.25 ÎŒm, L -leucine:%FPF 36.90 ± 3.6–43.38 ± 5.6; FPD 18.66 ± 2.90–21.58 ± 2.46 ÎŒg and MMAD 2.55 ± 0.03–3.68 ± 0.12 ÎŒm). Incorporating L -leucine (1.5%w/w) reduced the burst release (24.04 ± 3.87%) of SF compared to unmodified formulations (41.87 ± 2.46%), with both undergoing a square root of time (Higuchi’s pattern) dependent release. Comparing the toxicity profiles of PGA-co-PDL with L -leucine (1.5%w/w) (5 mg/ml) and poly(lactide-co-glycolide), (5 mg/ml) spray-dried microparticles in human bronchial epithelial 16HBE14o- cell lines, resulted in cell viability of 85.57 ± 5.44 and 60.66 ± 6.75%, respectively, after 72 h treatment. Conclusion The above data suggest that PGA-co-PDL may be a useful polymer for preparing SR microparticle carriers, together with dispersibility enhancers, for pulmonary delivery

    Powder Compaction: Compression Properties of Cellulose Ethers

    Get PDF
    Effective development of matrix tablets requires a comprehensive understanding of different raw material attributes and their impact on process parameters. Cellulose ethers (CE) are the most commonly used pharmaceutical excipients in the fabrication of hydrophilic matrices. The innate good compression and binding properties of CE enable matrices to be prepared using economical direct compression (DC) techniques. However, DC is sensitive to raw material attributes, thus, impacting the compaction process. This article critically reviews prior knowledge on the mechanism of powder compaction and the compression properties of cellulose ethers, giving timely insight into new developments in this field

    Doctors under the microscope: the birth of medical audit

    Full text link
    In 1989 a UK government White Paper introduced medical audit as a comprehensive and statutory system of assessment and improvement in quality of care in hospitals. A considerable body of research has described the evolution of medical audit in terms of a struggle between doctors and National Health Service managers over control of quality assurance. In this paper we examine the emergence of medical audit from 1910 to the early 1950s, with a particular focus on the pioneering work of the American surgeons Codman, MacEachern and Ponton. It is contended that medical professionals initially created medical audit in order to articulate a suitable methodology for assessing individual and organisational performance. Rather than a means of protecting the medical profession from public scrutiny, medical auditing was conceived and operationalised as a managerial tool for fostering the active engagement of senior hospital managers and discharging public accountability. These early debates reveal how accounting was implicated in the development of a system for monitoring and improving the work of medical professionals, advancing the quality of hospital care, and was advocated in ways, which included rather than excluded managers

    E2F1 Mediated Apoptosis Induced by the DNA Damage Response Is Blocked by EBV Nuclear Antigen 3C in Lymphoblastoid Cells

    Get PDF
    EBV latent antigen EBNA3C is indispensible for in vitro B-cell immortalization resulting in continuously proliferating lymphoblastoid cell lines (LCLs). EBNA3C was previously shown to target pRb for ubiquitin-proteasome mediated degradation, which facilitates G1 to S transition controlled by the major transcriptional activator E2F1. E2F1 also plays a pivotal role in regulating DNA damage induced apoptosis through both p53-dependent and -independent pathways. In this study, we demonstrate that in response to DNA damage LCLs knocked down for EBNA3C undergo a drastic induction of apoptosis, as a possible consequence of both p53- and E2F1-mediated activities. Importantly, EBNA3C was previously shown to suppress p53-induced apoptosis. Now, we also show that EBNA3C efficiently blocks E2F1-mediated apoptosis, as well as its anti-proliferative effects in a p53-independent manner, in response to DNA damage. The N- and C-terminal domains of EBNA3C form a stable pRb independent complex with the N-terminal DNA-binding region of E2F1 responsible for inducing apoptosis. Mechanistically, we show that EBNA3C represses E2F1 transcriptional activity via blocking its DNA-binding activity at the responsive promoters of p73 and Apaf-1 apoptosis induced genes, and also facilitates E2F1 degradation in an ubiquitin-proteasome dependent fashion. Moreover, in response to DNA damage, E2F1 knockdown LCLs exhibited a significant reduction in apoptosis with higher cell-viability. In the presence of normal mitogenic stimuli the growth rate of LCLs knockdown for E2F1 was markedly impaired; indicating that E2F1 plays a dual role in EBV positive cells and that active engagement of the EBNA3C-E2F1 complex is crucial for inhibition of DNA damage induced E2F1-mediated apoptosis. This study offers novel insights into our current understanding of EBV biology and enhances the potential for development of effective therapies against EBV associated B-cell lymphomas

    Higher Education Funding Issues: U.S. / UK Comparison

    Get PDF
    The paper compares and contrasts higher education funding sources and systems in the U.S. and the UK. The issues raised in the paper pertain to the major challenge of academia: finding financial support in times of limited resources and enhanced competition. The issues discussed throughout the paper are: funding and quality assessment of universities; funding and equity of access to post-secondary education; marketization and privatization of universities; funding, autonomy and accountability of higher education institutions
    • 

    corecore