1,159 research outputs found

    Principles and applications of CVD powder technology

    Get PDF
    Chemical vapor deposition (CVD) is an important technique for surface modification of powders through either grafting or deposition of films and coatings. The efficiency of this complex process primarily depends on appropriate contact between the reactive gas phase and the solid particles to be treated. Based on this requirement, the first part of this review focuses on the ways to ensure such contact and particularly on the formation of fluidized beds. Combination of constraints due to both fluidization and chemical vapor deposition leads to the definition of different types of reactors as an alternative to classical fluidized beds, such as spouted beds, circulating beds operating in turbulent and fast-transport regimes or vibro-fluidized beds. They operate under thermal but also plasma activation of the reactive gas and their design mainly depends on the type of powders to be treated. Modeling of both reactors and operating conditions is a valuable tool for understanding and optimizing these complex processes and materials. In the second part of the review, the state of the art on materials produced by fluidized bed chemical vapor deposition is presented. Beyond pioneering applications in the nuclear power industry, application domains, such as heterogeneous catalysis, microelectronics, photovoltaics and protection against wear, oxidation and heat are potentially concerned by processes involving chemical vapor deposition on powders. Moreover, simple and reduced cost FBCVD processes where the material to coat is immersed in the FB, allow the production of coatings for metals with different wear, oxidation and corrosion resistance. Finally, large-scale production of advanced nanomaterials is a promising area for the future extension and development of this technique

    Electrochemistry of thorium in LiCl-KCl eutectic melts

    Get PDF
    This work presents a study of the electrochemical properties of Th chloride ions dissolved in a molten LiCl-KCl eutectic, in a temperature range of 693-823 K. Transient electrochemical techniques such as cyclic voltammetry and chronopotentiommetry have been used in order to investigate the reduction mechanism on a tungsten electrode and the diffusion coefficient of dissolved Th ions. All techniques showed that only one valence state was stable in the melt. The reduction into Th metal was found to occur according to a one-step mechanism, through an irreversible reaction controlled by a nucleation process which requires an overpotential of several 100 mV. At 723 K, the diffusion coefficient is DTh(723K) = 3.7 ± 0.2·10-5 cm2.s-1. EMF measurements indicated that, at 723 K, the standard apparent potential is *0ThCl4 /Th) E (723 K) = - 2.582 V vs. Cl2/Cl-, and the activity coefficient γThCl4(723 K) = 8·10-3 on the mole fraction scale (based on a pure liquid reference state)

    Investigation of electrorefining of metallic alloy fuel onto solid Al cathodes

    Get PDF
    This work concerned the electrorefining of UZr and UPuZr alloys on a solid aluminium cathode, in the LiCl-KCl eutectic melt containing U3+, Pu3+, Np3+, Zr2+ or Zr 4+, Am3+, Nd3+, Y3+, Ce3+ and Gd3+ chlorides. During constant current electrolyses, the use of a cathodic cut-off potential (-1.25 V vs. Ag/AgCl) allowed to selectively deposit actinides (mainly U), while lanthanides remainedin the salt. The aim was to determine the maximal load achievable on a single aluminium electrode. The total exchange charge was 4300 C, which represents the deposition of 3.72 g of actinides in 4.17 g Al, yielding a composition of 44.6 wt% An in Al. It was shown that the melting of the cathode contributed to increase the total amount of actinides deposited on the aluminium

    Large scale production of multi-walled carbon nanotubes by fluidized bed catalytic chemical vapor deposition : a parametric study

    Get PDF
    A parametric study investigating the impact of temperature, run duration, total pressure, and composition of the gaseous phase on the catalytic growth of multi-walled carbon nanotubes (MWNT) has been performed. MWNT have been produced very selectively on the multi gram scale by catalytic chemical vapor deposition from ethylene in a fluidized bed reactor. The kinetics of MWNT growth is fast and, with the catalyst used, no induction period has been observed. The kinetic law is positive order in ethylene concentration and the process is limited by internal diffusion in the porosity of the catalyst. The formation of MWNT in the macroporosity of the catalyst induces an explosion of the catalyst grains. Such a process, thanks to the absence of temperature gradient and to the efficient mixing of the grains allows a uniform and selective treatment of the catalyst powder leading to very high selectivity towards MWNT formation. High purity MWNT have been obtained after catalyst dissolution. Depending on the temperature of production, the specific surface area of this material ranged between 95 and 455 m2/g

    Rapport sur les dispositifs d\u27accompagnement des collectivités locales à l\u27ouverture des données publiques

    Get PDF
    L\u27ouverture des données publiques s\u27est développée en France depuis quelques années à l\u27initiative de l\u27Etat et de collectivités locales pionnières. La généralisation de l’ouverture des données publiques dans les collectivités locales a été prévue à l’horizon 2018 par la loi pour une République numérique. Ce rapport a été commandé par les deux ministres à l’association Open Data France en juillet 2016, notamment en lien avec la loi pour une République numérique qui prévoit, pour les collectivités locales de plus de 3 500 habitants,une obligation d’open data par défaut

    Weiss's Urethra Dilafor.

    Get PDF
    n/

    Neodymium and gadolinium extraction from molten fluorides by reduction on a reactive electrode

    Get PDF
    This work describes the electrochemical extraction on a reactive cathode (Cu, Ni) of two lanthanides Ln (Ln = Nd and Gd) from molten LiF-CaF2 medium at 840 and 920°C for Nd and 940°C for Gd. Extraction runs have been performed and the operating conditions (cathodic material and temperature) optimised. The titration of the Nd and Gd concentrations in the melt during extraction used square wave voltammetry. At the end of each run, the residual Ln content was checked by ICP-AES; the extraction efficiencies of the two lanthanides were found to be more than 99.8% on both reactive substrates

    An original growth mode of MWCNTs on alumina supported iron catalysts

    Get PDF
    Multi-walled carbon nanotubes (MWCNTs) have been produced from ethylene by Fluidized Bed Catalytic Chemical Vapor Deposition (FB-CCVD) on alumina supported iron catalyst powders. Both catalysts and MWCNTs-catalyst composites have been characterized by XRD, SEM-EDX, TEM, Mössbauer Spectroscopy, TGA and nitrogen adsorption measurements at different stages of the process. The fresh catalyst is composed of amorphous iron (III) oxide nanoparticles located inside the porosity of the support and of a micrometric crystalline &-iron (III) oxide surface film. The beginning of the CVD process provokes a brutal reconstruction and simultaneous carburization of the surface film that allows MWCNT nucleation and growth. These MWCNTs grow aligned between the support and the surface catalytic film, leading to a uniform consumption and uprising of the film. When the catalytic film has been consumed, the catalytic particles located inside the alumina porosity are slowly reduced and activated leading to a secondary MWCNT growth regime, which produces a generalized grain explosion and entangled MWCNT growth. Based on experimental observations and characterizations, this original two-stage growth mode is discussed and a general growth mechanism is proposed

    Beneficial influence of nanocarbon on the aryliminopyridylnickel chloride catalyzed ethylene polymerization

    Get PDF
    A series of 1-aryliminoethylpyridine ligands (L1―L3) was synthesized by condensation of 2-acetylpyridine with 1-aminonaphthalene, 2-aminoanthracene or 1-aminopyrene, respectively. Reaction with nickel dichloride afforded the corresponding nickel (II) chloride complexes (Ni1–Ni3). All compounds were fully characterized and the molecular structures of Ni1 and Ni3 are reported. Upon activation with methylaluminoxane (MAO), all nickel complexes exhibit high activities for ethylene polymerization, producing waxes of low molecular weight and narrow polydispersity. The presence of multi-walled carbon nanotubes (MWCNTs) or few layer graphene (FLG) in the catalytic medium can lead to an increase of productivity associated to a modification of the polymer structure
    corecore