219 research outputs found

    Effects of Stormwater Management and an Extended Culvert on Stream Health in Dug Run, Allen County, Ohio, USA

    Get PDF
    Changes in stream hydrology and habitat—associated with urbanization—have impacted diversity, abundance, and movement of both macroinvertebrates and fish. In 2008 the University of Northwestern Ohio began developing the western half of the campus, incorporating stormwater management practices. This provided an opportunity to examine 3 sections of the Dug Run stream that flows through campus: 1 section on the western half of campus that filters stormwater through the soil, and 2 sections on the eastern half of campus which are affected by both urbanization and a culvert that extends under a building and a road. Significant differences in macroinvertebrate Stream Quality Monitoring (SQM) index scores ( p < 0.001), fish diversity ( p < 0.010), and abundance of Orangethroat Darters (Etheostoma spectabile) ( p < 0.001) were observed between the western and the 2 eastern sections of Dug Run. Lower SQM index scores and lower Orangethroat Darter abundances were found in the urbanized sections of the stream, while lower fish diversity numbers were found upstream of the culvert. The western portion of campus, designed to filter stormwater runoff through the soil, was the only section studied with sensitive macroinvertebrates, a higher SQM index score, and a greater abundance of Orangethroat Darters

    On the Classification of UGC1382 as a Giant Low Surface Brightness Galaxy

    Get PDF
    We provide evidence that UGC1382, long believed to be a passive elliptical galaxy, is actually a giant low surface brightness (GLSB) galaxy which rivals the archetypical GLSB Malin 1 in size. Like other GLSB galaxies, it has two components: a high surface brightness disk galaxy surrounded by an extended low surface brightness (LSB) disk. For UGC1382, the central component is a lenticular system with an effective radius of 6 kpc. Beyond this, the LSB disk has an effective radius of ~38 kpc and an extrapolated central surface brightness of ~26 mag/arcsec^2. Both components have a combined stellar mass of ~8x10^10 M_sun, and are embedded in a massive (10^10 M_sun) low-density (<3 M_sun/pc^2) HI disk with a radius of 110 kpc, making this one of the largest isolated disk galaxies known. The system resides in a massive dark matter halo of at least 2x10^12 M_sun. Although possibly part of a small group, its low density environment likely plays a role in the formation and retention of the giant LSB and HI disks. We model the spectral energy distributions and find that the LSB disk is likely older than the lenticular component. UGC1382 has UV-optical colors typical of galaxies transitioning through the green valley. Within the LSB disk are spiral arms forming stars at extremely low efficiencies. The gas depletion time scale of ~10^11 yr suggests that UGC1382 may be a very long term resident of the green valley. We find that the formation and evolution of the LSB disk is best explained by the accretion of gas-rich LSB dwarf galaxies.Comment: 17 pages, 16 figures, 4 tables; accepted to the Astrophysical Journa

    Measurement of scintillation efficiency for nuclear recoils in liquid argon

    Get PDF
    The scintillation light yield of liquid argon from nuclear recoils relative to electronic recoils has been measured as a function of recoil energy from 10 keVr up to 250 keVr at zero electric field. The scintillation efficiency, defined as the ratio of the nuclear recoil scintillation response to the electronic recoil response, is 0.25±0.01+0.01 (correlated) above 20 keVr. © 2012 American Physical Society

    Constructing a WISE High Resolution Galaxy Atlas

    Get PDF
    After eight months of continuous observations, the Wide-field Infrared Survey Explorer (WISE) mapped the entire sky at 3.4 {\mu}m, 4.6 {\mu}m, 12 {\mu}m and 22 {\mu}m. We have begun a dedicated WISE High Resolution Galaxy Atlas (WHRGA) project to fully characterize large, nearby galaxies and produce a legacy image atlas and source catalogue. Here we summarize the deconvolution technique used to significantly improve the spatial resolution of WISE imaging, specifically designed to study the internal anatomy of nearby galaxies. As a case study, we present results for the galaxy NGC 1566, comparing the WISE super-resolution image processing to that of Spitzer, GALEX and ground-based imaging. The is the first paper in a two part series; results for a much larger sample of nearby galaxies is presented in the second paper.Comment: Published in the AJ (2012, AJ, 144, 68

    The GALEX View of Supernova Hosts

    Get PDF
    We exploit the accumulating, high-quality, multi-wavelength imaging data of nearby supernova (SN) hosts to explore the relationship between SN production and host galaxy evolution. The Galaxy Evolution Explorer (GALEX, Martin et al., 2005) provides ultraviolet (UV) imaging in two bands, complementing data in the optical and infra-red (IR). We compare host properties, derived from spectral energy distribution (SED) fitting, with nearby, well-observed SN Ia light curve properties. We also explore where the hosts of different types of SNe fall relative to the red and blue sequences on the galaxy UV-optical color-magnitude diagram (CMD, Wyder et al., 2007). We conclude that further exploration and larger samples will provide useful results for constraining the progenitors of SNe.Comment: 4 pages, 3 figures, to appear in 'Probing Stellar Populations out to the Distant Universe', proceedings of a conference in Cefalu' Sicily (Italy) held September 7-19, 200

    The Recent Star Formation in NGC 6822: an Ultraviolet Study

    Get PDF
    We characterize the star formation in the low-metallicity galaxy NGC 6822 over the past few hundred million years, using GALEX far-UV (FUV, 1344-1786 A) and near-UV (NUV, 1771-2831 A) imaging, and ground-based Ha imaging. From GALEX FUV image, we define 77 star-forming (SF) regions with area >860 pc^2, and surface brightness <=26.8 mag(AB)arcsec^-2, within 0.2deg (1.7kpc) of the center of the galaxy. We estimate the extinction by interstellar dust in each SF region from resolved photometry of the hot stars it contains: E(B-V) ranges from the minimum foreground value of 0.22mag up to 0.66+-0.21mag. The integrated FUV and NUV photometry, compared with stellar population models, yields ages of the SF complexes up to a few hundred Myr, and masses from 2x10^2 Msun to 1.5x10^6 Msun. The derived ages and masses strongly depend on the assumed type of interstellar selective extinction, which we find to vary across the galaxy. The total mass of the FUV-defined SF regions translates into an average star formation rate (SFR) of 1.4x10^-2 Msun/yr over the past 100 Myr, and SFR=1.0x10^-2 Msun/yr in the most recent 10 Myr. The latter is in agreement with the value that we derive from the Ha luminosity, SFR=0.008 Msun/yr. The SFR in the most recent epoch becomes higher if we add the SFR=0.02 Msun/yr inferred from far-IR measurements, which trace star formation still embedded in dust (age <= a few Myr).Comment: Accepted for publication in ApJ, 21 pages, 6 figures, 3 table

    Dust Attenuation in UV-selected Starbursts at High Redshift and Their Local Counterparts: Implications for the Cosmic Star Formation Rate Density

    Get PDF
    We present a new analysis of the dust obscuration in starburst galaxies at low and high redshifts. This study is motivated by our unique sample of the most extreme UV-selected starburst galaxies in the nearby universe (z < 0.3), found to be good analogs of high-redshift Lyman break galaxies (LBGs) in most of their physical properties. We find that the dust properties of the Lyman break analogs (LBAs) are consistent with the relation derived previously by Meurer et al. (M99) that is commonly used to dust-correct star formation rate (SFR) measurements at a very wide range of redshifts. We directly compare our results with high-redshift samples (LBGs, "BzK," and submillimeter galaxies at z ~ 2-3) having IR data either from Spitzer or Herschel. The attenuation in typical LBGs at z ~ 2-3 and LBAs is very similar. Because LBAs are much better analogs to LBGs compared to previous local star-forming samples, including M99, the practice of dust-correcting the SFRs of high-redshift galaxies based on the local calibration is now placed on a much more solid ground. We illustrate the importance of this result by showing how the locally calibrated relation between UV measurements and extinction is used to estimate the integrated, dust-corrected SFR density at z ≃ 2-6

    Extending the Nearby Galaxy Heritage with WISE: First Results from the WISE Enhanced Resolution Galaxy Atlas

    Get PDF
    The Wide-field Infrared Survey Explorer (WISE) mapped the entire sky at mid-infrared wavelengths 3.4 μm, 4.6 μm, 12 μm, and 22 μm. The mission was primarily designed to extract point sources, leaving resolved and extended sources, for the most part, unexplored. Accordingly, we have begun a dedicated WISE Enhanced Resolution Galaxy Atlas (WERGA) project to fully characterize large, nearby galaxies and produce a legacy image atlas and source catalog. Here we demonstrate the first results of the WERGA project for a sample of 17 galaxies, chosen to be of large angular size, diverse morphology, and covering a range in color, stellar mass, and star formation. It includes many well-studied galaxies, such as M 51, M 81, M 87, M 83, M 101, and IC 342. Photometry and surface brightness decomposition is carried out after special super-resolution processing, achieving spatial resolutions similar to that of Spitzer Infrared Array Camera. The enhanced resolution method is summarized in the first paper of this two-part series. In this second work, we present WISE, Spitzer, and Galaxy Evolution Explorer (GALEX) photometric and characterization measurements for the sample galaxies, combining the measurements to study the global properties. We derive star formation rates using the polycyclic aromatic hydrocarbon sensitive 12 μm (W3) fluxes, warm-dust sensitive 22 μm (W4) fluxes, and young massive-star sensitive ultraviolet (UV) fluxes. Stellar masses are estimated using the 3.4 μm (W1) and 4.6 μm (W2) measurements that trace the dominant stellar mass content. We highlight and showcase the detailed results of M 83, comparing the WISE/Spitzer results with the Australia Telescope Compact Array H I gas distribution and GALEX UV emission, tracing the evolution from gas to stars. In addition to the enhanced images, WISE's all-sky coverage provides a tremendous advantage over Spitzer for building a complete nearby galaxy catalog, tracing both stellar mass and star formation histories. We discuss the construction of a complete mid-infrared catalog of galaxies and its complementary role of studying the assembly and evolution of galaxies in the local universe
    • …
    corecore