4,550 research outputs found

    Enhanced recovery: joining the dots

    Get PDF

    Hip and Knee Replacement in the HIV positive patient

    Get PDF
    Arthroplasty is used to relieve pain associated with degenerative or inflammatory joint disease, some post-traumatic joint problems, and avascular necrosis. Avascular necrosis, inflammatory and post-traumatic problems are seen on a regular basis in areas of high HIV seroprevalence. Degenerative arthritis is rare in younger HIV patients, however. Historically the only group of HIV patients in which arthroplasty has been common is that which received contaminated factor VIII transfusions in the 1980’s. Haemophiliacs get a haemophilic arthropathy from repeated bleeds into joints and so is an additional complication.Much of the previous literature on this topic has focused on haemophiliac patients. This review examines the success of arthroplasty in HIV positive patients, with an emphasis on non-haemophiliac patients. We conclude that arthroplasty can be a safe procedure for HIV positive individuals if the surgery is carried out in good conditions, and early results are encouraging

    Design, synthesis, catalytic application, and strategic redispersion of plasmonic silver nanoparticles in ionic liquid media

    Get PDF
    NSERCPeer ReviewedSilver nanoparticles synthesized in tetraalkylphosphonium ionic liquids are found to be excellent catalysts for borohydride-induced reductive degeneration of Eosin-Y, a dye that has been classified as a Class 3 carcinogen by the International Agency for Research on Cancer. TEM images indicated that the size of the Ag nanoparticles was significantly influenced by heat-induced sintering. A strategy was devised to redisperse smaller Ag nanoparticles from their aggregated/sintered counterparts via a two-step protocol that involved oxidative etching of Ag nanoparticles, followed by a re-reduction step. This protocol led to a reduction in the sintered Ag nanoparticle size from 15.7 ± 6.1 nm to 3.7 ± 0.8 nm, which was consistent with the size of the as-synthesized nanoparticles. The as-synthesized and the redispersed Ag nanoparticles were found to catalyze the bleaching of Eosin-Y with comparable efficiencies; first order rate constants for Eosin Y reduction were ∼8 times higher for smaller Ag nanoparticles compared to their sintered counterparts. An examination of the kinetics of Ag nanoparticle etching was performed via temperature-controlled UV–vis spectroscopy. Changes in the oxidation state of Ag during this sequence of events were also followed by in situ X-ray absorption spectroscopy of Ag nanoparticles in the ionic liquid

    Watching Iron Nanoparticles Rust: An In Situ X-ray Absorption Spectroscopic Study

    Get PDF
    NSERCPeer ReviewedIron nanoparticles and iron oxide nanoparticles are among the most commonly studied nanomaterials because of their applications in fields ranging from catalysis to ferrofluids. However, many synthetic methods give iron nanoparticles with large size distributions, and it is difficult to follow the kinetics of iron nanoparticle oxidation reactions and the relative speciation of iron oxidation states in real time. Herein, we introduce a simple approach of controlling the sizes of Fe@FexOy nanoparticles and a novel method for following Fe@FexOy nanoparticle oxidation in situ in liquid solutions by Fe K- and L-edge X-ray absorption near-edge structure (XANES) spectroscopy. XANES results show that these Fe@FexOy nanoparticles have similar XANES spectra before exposure to air. In situ XANES measurements allow for quantitative oxidation kinetics of different nanoparticle sizes to be followed; results show that the rate of Fe(0) oxidation increases with a decrease in average nanoparticle size. However, the rate of Fe core size depletion was found to be ca. 0.02 nm/min for all the nanoparticle systems studied. This suggests similar oxidation mechanisms are at work for all the particle sizes studied. This work shows that in situ liquid cell XANES can be used to follow oxidation state and coordination environment changes in Fe NP dispersions

    Design, synthesis, catalytic application, and strategic redispersion of plasmonic silver nanoparticles in ionic liquid media

    Get PDF
    NSERCPeer ReviewedSilver nanoparticles synthesized in tetraalkylphosphonium ionic liquids are found to be excellent catalysts for borohydride-induced reductive degeneration of Eosin-Y, a dye that has been classified as a Class 3 carcinogen by the International Agency for Research on Cancer. TEM images indicated that the size of the Ag nanoparticles was significantly influenced by heat-induced sintering. A strategy was devised to redisperse smaller Ag nanoparticles from their aggregated/sintered counterparts via a two-step protocol that involved oxidative etching of Ag nanoparticles, followed by a re-reduction step. This protocol led to a reduction in the sintered Ag nanoparticle size from 15.7 ± 6.1 nm to 3.7 ± 0.8 nm, which was consistent with the size of the as-synthesized nanoparticles. The as-synthesized and the redispersed Ag nanoparticles were found to catalyze the bleaching of Eosin-Y with comparable efficiencies; first order rate constants for Eosin Y reduction were ∼8 times higher for smaller Ag nanoparticles compared to their sintered counterparts. An examination of the kinetics of Ag nanoparticle etching was performed via temperature-controlled UV–vis spectroscopy. Changes in the oxidation state of Ag during this sequence of events were also followed by in situ X-ray absorption spectroscopy of Ag nanoparticles in the ionic liquid

    Radiographic assessment of the skeletons of Dolly and other clones finds no abnormal osteoarthritis

    Get PDF
    Our recent report detailing the health status of cloned sheep concluded that the animals had aged normally. This is in stark contrast to reports on Dolly (first animal cloned from adult cells) whose diagnoses of osteoarthritis (OA) at 5½ years of age led to considerable scientific concern and media debate over the possibility of early-onset age-related diseases in cloned animals. Our study included four 8-year old ewes derived from the cell line that gave rise to Dolly, yet none of our aged sheep showed clinical signs of OA, and they had radiographic evidence of only mild or, in one case, moderate OA. Given that the only formal record of OA in Dolly is a brief mention of a single joint in a conference abstract, this led us to question whether the original concerns about Dolly’s OA were justified. As none of the original clinical or radiographic records were preserved, we undertook radiographic examination of the skeletons of Dolly and her contemporary clones. We report a prevalence and distribution of radiographic-OA similar to that observed in naturally conceived sheep, and our healthy aged cloned sheep. We conclude that the original concerns that cloning had caused early-onset OA in Dolly were unfounded

    Variation in the Male Pheromones and Mating Success of Wild Caught Drosophila melanogaster

    Get PDF
    Drosophila melanogaster males express two primary cuticular hydrocarbons (male-predominant hydrocarbons). These act as sex pheromones by influencing female receptivity to mating. The relative quantities of these hydrocarbons vary widely among natural populations and can contribute to variation in mating success. We tested four isofemale lines collected from a wild population to assess the effect of intrapopulation variation in male-predominant hydrocarbons on mating success. The receptivity of laboratory females to males of the four wild-caught lines varied significantly, but not consistently in the direction predicted by variation in male-predominant hydrocarbons. Receptivity of the wild-caught females to laboratory males also varied significantly, but females from lines with male-predominant hydrocarbon profiles closer to a more cosmopolitan one did not show a correspondingly strong mating bias toward a cosmopolitan male. Among wild-caught lines, the male-specific ejaculatory bulb lipid, cis-vaccenyl acetate, varied more than two-fold, but was not associated with variation in male mating success. We observed a strong inverse relationship between the receptivity of wild-caught females and the mating success of males from their own lines, when tested with laboratory flies of the opposite sex

    Protection against Experimental Melioidosis with a Synthetic manno-Heptopyranose Hexasaccharide Glycoconjugate

    Get PDF
    This is the final version of the article. Available from the publisher via the DOI in this record.Melioidosis is an emerging infectious disease caused by Burkholderia pseudomallei and is associated with high morbidity and mortality rates in endemic areas. Antibiotic treatment is protracted and not always successful; even with appropriate therapy, up to 40% of individuals presenting with melioidosis in Thailand succumb to infection. In these circumstances, an effective vaccine has the potential to have a dramatic impact on both the scale and the severity of disease. Currently, no vaccines are licensed for human use. A leading vaccine candidate is the capsular polysaccharide consisting of a homopolymer of unbranched 1→3 linked 2-O-acetyl-6-deoxy-β-d-manno-heptopyranose. Here, we present the chemical synthesis of this challenging antigen using a novel modular disaccharide assembly approach. The resulting hexasaccharide was coupled to the nontoxic Hc domain of tetanus toxin as a carrier protein to promote recruitment of T-cell help and provide a scaffold for antigen display. Mice immunized with the glycoconjugate developed IgM and IgG responses capable of recognizing native capsule, and were protected against infection with over 120 × LD50 of B. pseudomallei strain K96243. This is the first report of the chemical synthesis of an immunologically relevant and protective hexasaccharide fragment of the capsular polysaccharide of B. pseudomallei and serves as the rational starting point for the development of an effective licensed vaccine for this emerging infectious disease.This work was funded by the United Kingdom Ministry of Defence. The mass spectral data described here were acquired on an Orbitrap Fusion mass spectrometer funded by National Institutes of Health grant 1S10OD010645-01A1

    Identifying Experimental Tool Use Through Confocal Microscopy

    Get PDF
    Characterizing use-wear traces quantitatively is a valid way to improve the capacity of use-wear analysis. This aim has been on specialists’ agenda since the beginning of the discipline. Micropolish quantification is especially important, as this type of trace allows the identification of worked materials. During the last decade, confocal microscopy has been used as a promising approach to address this question. Following previous efforts in plant microwear characterization (Ibáñez et al. Journal of Archaeological Science, 48, 96–103, 2014; Journal of Archaeological Science, 73, 62–81, 2016), here we test the capacity of the method for correctly grouping experimental tools used for working eight types of materials: bone, antler, wood, fresh hide, dry hide, wild cereals, domestic cereals, and reeds. We demonstrate, for the first time, that quantitative texture analysis of use-wear micropolish based on confocal microscopy can consistently identify tools used for working different contact materials. In this way, we are able to move toward using texture analysis as part of the standard functional analysis of prehistoric instruments.This study is part of the projects HAR2016-74999-P, HAR2015-68566-P, and HAR2016-81971-REDT funded by the Spanish Ministerio de Ciencia, Innovación y Universidades.Peer reviewe
    • …
    corecore