610 research outputs found

    Goldstone boson counting in linear sigma models with chemical potential

    Full text link
    We analyze the effects of finite chemical potential on spontaneous breaking of internal symmetries within the class of relativistic field theories described by the linear sigma model. Special attention is paid to the emergence of ``abnormal'' Goldstone bosons with quadratic dispersion relation. We show that their presence is tightly connected to nonzero density of the Noether charges, and formulate a general counting rule. The general results are demonstrated on an SU(3)xU(1) invariant model with an SU(3)-sextet scalar field, which describes one of the color-superconducting phases of QCD.Comment: 10 pages, REVTeX4, 4 eps figures, v2: general discussion in Sec. IV expanded and improved, references added, other minor corrections throughout the tex

    qq-Trinomial identities

    Full text link
    We obtain connection coefficients between qq-binomial and qq-trinomial coefficients. Using these, one can transform qq-binomial identities into a qq-trinomial identities and back again. To demonstrate the usefulness of this procedure we rederive some known trinomial identities related to partition theory and prove many of the conjectures of Berkovich, McCoy and Pearce, which have recently arisen in their study of the ϕ2,1\phi_{2,1} and ϕ1,5\phi_{1,5} perturbations of minimal conformal field theory.Comment: 21 pages, AMSLate

    A non-symmetric Yang-Baxter Algebra for the Quantum Nonlinear Schr\"odinger Model

    Get PDF
    We study certain non-symmetric wavefunctions associated to the quantum nonlinear Schr\"odinger model, introduced by Komori and Hikami using Gutkin's propagation operator, which involves representations of the degenerate affine Hecke algebra. We highlight how these functions can be generated using a vertex-type operator formalism similar to the recursion defining the symmetric (Bethe) wavefunction in the quantum inverse scattering method. Furthermore, some of the commutation relations encoded in the Yang-Baxter equation for the relevant monodromy matrix are generalized to the non-symmetric case.Comment: 31 pages; added some references; minor corrections throughou

    Zassenhaus conjecture for central extensions of S5

    Get PDF
    We confirm a conjecture of Zassenhaus about rational conjugacy of torsion units in integral group rings for a covering group of the symmetric group S5 and for the general linear group GLð2; 5Þ. The first result, together with others from the literature, settles the conjugacy question for units of prime-power order in the integral group ring of a finite Frobenius group

    On the multiplicativity of quantum cat maps

    Full text link
    The quantum mechanical propagators of the linear automorphisms of the two-torus (cat maps) determine a projective unitary representation of the theta group, known as Weil's representation. We prove that there exists an appropriate choice of phases in the propagators that defines a proper representation of the theta group. We also give explicit formulae for the propagators in this representation.Comment: Revised version: proof of the main theorem simplified. 21 page

    Fermionic representations for characters of M(3,t), M(4,5), M(5,6) and M(6,7) minimal models and related Rogers-Ramanujan type and dilogarithm identities

    Full text link
    Characters and linear combinations of characters that admit a fermionic sum representation as well as a factorized form are considered for some minimal Virasoro models. As a consequence, various Rogers-Ramanujan type identities are obtained. Dilogarithm identities producing corresponding effective central charges and secondary effective central charges are derived. Several ways of constructing more general fermionic representations are discussed.Comment: 14 pages, LaTex; minor correction

    Fourier-Space Crystallography as Group Cohomology

    Full text link
    We reformulate Fourier-space crystallography in the language of cohomology of groups. Once the problem is understood as a classification of linear functions on the lattice, restricted by a particular group relation, and identified by gauge transformation, the cohomological description becomes natural. We review Fourier-space crystallography and group cohomology, quote the fact that cohomology is dual to homology, and exhibit several results, previously established for special cases or by intricate calculation, that fall immediately out of the formalism. In particular, we prove that {\it two phase functions are gauge equivalent if and only if they agree on all their gauge-invariant integral linear combinations} and show how to find all these linear combinations systematically.Comment: plain tex, 14 pages (replaced 5/8/01 to include archive preprint number for reference 22

    Obstructing extensions of the functor Spec to noncommutative rings

    Full text link
    In this paper we study contravariant functors from the category of rings to the category of sets whose restriction to the full subcategory of commutative rings is isomorphic to the prime spectrum functor Spec. The main result reveals a common characteristic of these functors: every such functor assigns the empty set to M_n(C) for n >= 3. The proof relies, in part, on the Kochen-Specker Theorem of quantum mechanics. The analogous result for noncommutative extensions of the Gelfand spectrum functor for C*-algebras is also proved.Comment: 23 pages. To appear in Israel J. Math. Title was changed; introduction was rewritten; old Section 2 was removed to streamline the exposition; final section was rewritten to omit an error in the earlier proof of Theorem 1.

    Schur Q-functions and degeneracy locus formulas for morphisms with symmetries

    Full text link
    We give closed-form formulas for the fundamental classes of degeneracy loci associated with vector bundle maps given locally by (not necessary square) matrices which are symmetric (resp. skew-symmetric) w.r.t. the main diagonal. Our description uses essentially Schur Q-polynomials of a bundle, and is based on a certain push-forward formula for these polynomials in a Grassmann bundle.Comment: 22 pages, AMSTEX, misprints corrected, exposition improved. to appear in the Proceedings of Intersection Theory Conference in Bologna, "Progress in Mathematics", Birkhause
    corecore