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Zassenhaus conjecture for central extensions of S5
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Abstract. We confirm a conjecture of Zassenhaus about rational conjugacy of torsion units in
integral group rings for a covering group of the symmetric group S5 and for the general linear
group GLð2; 5Þ. The first result, together with others from the literature, settles the conjugacy
question for units of prime-power order in the integral group ring of a finite Frobenius group.

1 Introduction

The conjecture of the title states:

(ZC1) For a finite group G, every torsion unit in its integral group ring ZG is conju-
gate to an element ofGG by a unit of the rational group ring QG.

This conjecture remains not only open but also lacking in plausible means of
finding either a proof or a counter-example, at least for non-solvable groups G. The
purpose of this note is to add two further groups to the small list of non-solvable
groups G for which conjecture (ZC1) has been verified (see [14], [17], [23], [24]).

Example 1. The conjecture (ZC1) holds for the covering group ~SS5 of the symmetric
group S5 which contains a unique conjugacy class of involutions.

Example 2. The conjecture (ZC1) holds for the general linear group GLð2; 5Þ.

We remark that PGLð2; 5ÞGS5 (see [20, Kapitel II, 6.14 Satz]).
The covering group ~SS5 occurs as a Frobenius complement in Frobenius groups (for

the classification of Frobenius complements see [27]). From already existing work in
[13], [14], [21], it follows that Example 1 supplies the missing part for the proof of the
following theorem.

Theorem 3. Let G be a finite Frobenius group. Then each torsion unit in ZG which is of
prime-power order is conjugate to an element ofGG by a unit of QG.

*The first author’s work was supported by OTKA T 037202, T 038059.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Repository of the Academy's Library

https://core.ac.uk/display/11857496?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


The proofs are obtained by applying a procedure, introduced in [23] and sub-
sequently called the Luthar–Passi method [6], in an extended version developed in
[17]. We shall use the validity of (ZC1) for S5, established in [24] (see also [17, Section
5] for a proof using the Luthar–Passi method). Below, we briefly recall this method,
which uses the character table and/or modular character tables in an automated pro-
cess suited for being carried out on a computer, the result being that rational con-
jugacy of torsion units of a given order to group elements is either proven or not, and
if not, at least some information about partial augmentations is obtained; cf. [6], [7],
[8], [10]. We have tried to keep proofs free of useless ballast and to present them in
a readable form, rather than producing systems of inequalities (as explained below)
and their solutions which could reasonably be done on a computer. It is intended to
provide routines for this in the GAP package LAGUNA [9].

2 Preliminaries

We provide the necessary background on torsion units in integral group rings. Let G
be a finite group. Recall that for a group ring element a ¼

P
g AG agg in ZG (with all

ag in Z), the partial augmentation of a with respect to the conjugacy class xG of an
element x of G, denoted below by exðaÞ or exGðaÞ, is the sum

P
g A xG ag. The aug-

mentation of a is the sum of all of its partial augmentations. It su‰ces to consider
units of augmentation one, which form a group denoted by VðZGÞ. So let u be a
torsion unit in VðZGÞ.
The familiar result of Berman and Higman (from [1] and [19, p. 27]) asserts that if

ezðuÞ0 0 for some z in the center of G, then u ¼ z.
A practical criterion for u to be conjugate to an element of G by a unit of QG is

that all but one of the partial augmentations of every power of u must vanish (see [25,
Theorem 2.5]).
The next two remarks will be used repeatedly. While the first one is elementary and

well known, the second is of a more recent nature, taken from [17] where an obvious
generalization of [18, Proposition 3.1] is given.

Remark 4. Let N be a normal subgroup of G and set G ¼ G=N. We write u for the
image of u under the natural map ZG ! ZG. Since any conjugacy class of G maps
onto a conjugacy class of G, for any x A G the partial augmentation exðuÞ is the sum
of the partial augmentations egG ðuÞ with g A G such that g is conjugate to x in G.
Now suppose that N is a central subgroup of G, and that u ¼ 1. Then u A N. In-

deed, 1 ¼ e1ðuÞ ¼
P

n AN enðuÞ, and so u has a central group element in its support
and the Berman–Higman result applies.

Remark 5. If egðuÞ0 0 for some g A G, then the order of g divides the order of u.
Indeed, it is well known that then the prime divisors of the order of g divide the order
of u (see [25, Theorem 2.7], as well as [18, Lemma 2.8] for an alternative proof ).
Further, it was observed in [17, Proposition 2.2] that the orders of the p-parts of g
cannot exceed those of u.
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On one occasion, we shall use the following remark.

Remark 6. Let p be a rational prime, and let x A G. If yG is a conjugacy class of G
containing an element whose pth power is in xG, we write ðyGÞp ¼ xG. A simple but
powerful equation which leads to so many group ring consequences is

exG ðapÞ1
X

ðyGÞp¼xG

eyGðaÞ mod p

for all a A ZG. (This formula (in prime characteristic) can be traced back to work of
Brauer. It obviously derives from a significant feature of the pth power map (which
may be found in [28, Lemma 2.3.1]). The underlying basic idea was attributed to
Landau by Zassenhaus in [30]. A generalization is given by Cli¤ ’s formula [11] (re-
stated in [22, Lemma 2]). Applications can be found, for instance, in [15], [21], [22],
[28, Section 2].)

We shall use the fact that if there is only one conjugacy class yG with ðyGÞp ¼ xG,
and eyGðuÞD 0 mod p, then exG ðupÞ0 0.

Finally, we outline the Luthar–Passi method. Let u be of order n (say), and let z be
a primitive complex nth root of unity. For a character w a¤orded by a complex rep-
resentation D of G, write mðx; u; wÞ for the multiplicity of an nth root of unity x as an
eigenvalue of the matrix DðuÞ. By [23],

mðx; u; wÞ ¼ 1

n

X

djn
TrQðz d Þ=Qðwðu

dÞx$dÞ:

When trying to show that u is rationally conjugate to an element of G, one may
assume—by induction on the order of u—that the values of the summands for d0 1
are ‘known’. The summand for d ¼ 1 can be written as

1

n

X

gG

egðuÞTrQðzÞ=QðwðgÞx$1Þ;

a linear combination of the egðuÞ with ‘known’ coe‰cients. Note that the mðx; u; wÞ
are non-negative integers, bounded above by wð1Þ. Thus, in some sense, there are
linear inequalities in the partial augmentations of u which impose constraints
on them. Trying to make use of these inequalities is now understood as being the
Luthar–Passi method.

A modular version of this method (see [17, Section 4] for details) can be derived
from the following observation in the same way as the original (complex) version is
derived from the (obvious) fact that wðuÞ ¼

P
gG egðuÞwðgÞ. Suppose that p is a ratio-

nal prime which does not divide the order of u (i.e., u is a p-regular torsion unit).
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Then for every Brauer character j of G (relative to p) we have (see [17, Theorem
3.2]):

jðuÞ ¼
X

gG :g is
p-regular

egðuÞjðgÞ:

Thereby, the domain of j is naturally extended to the set of p-regular torsion units
in ZG.

3 A covering group of S5

A presentation of a covering group of Sn is given by

~SSn ¼ hg1; . . . ; gn$1; z j g2i ¼ ðgjgjþ1Þ3 ¼ ðgkglÞ2 ¼ z; z2 ¼ ½z; gi' ¼ 1

for 1c ic n$ 1; 1c jc n$ 2; kc l $ 2c n$ 3i:

Recent results in the representation theory of the covering groups of symmetric
groups can be found in Bessenrodt’s survey article [2]. We merely remark that the
complex spin characters of ~SSn, i.e., those characters which are not characters of Sn,
were determined by Schur [29].
The group ~SS5 has catalogue number 89 in the Small Group Library in GAP [16]

(the other covering group of S5 has number 90). The spin characters of ~SS5 as pro-
duced by GAP are shown in Table 1 (dots indicate zeros).

We turn to the proof that conjecture (ZC1) holds for ~SS5. Let z be the central in-
volution in ~SS5. Then we have a natural homomorphism

p : Z ~SS5 ! Z ~SS5=hzi ¼ ZS5:

Let u be a non-trivial torsion unit in VðZ ~SS5Þ. We shall show that all but one of its
partial augmentations vanish. Since (ZC1) is true for S5, the order of pðuÞ agrees with

1a 5a 4a 2a 10a 6a 3a 8a 8b 4b 12a 12b

w5 4 $1 . $4 1 2 $2 . . . . .
w6 4 $1 . $4 1 $1 1 . . . b $b
w7 4 $1 . $4 1 $1 1 . . . $b b
w11 6 1 . $6 $1 . . a $a . . .
w12 6 1 . $6 $1 . . $a a . . .

Irrational entries: a ¼ $z8 þ z38 ¼ $
ffiffiffi
2

p
where z8 ¼ expð2pi=8Þ,

b ¼ z712 $ z1112 ¼ $
ffiffiffi
3

p
where z12 ¼ expð2pi=12Þ.

Table 1. Spin characters of ~SS5
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the order of an element of S5, and it follows that the order of u agrees with the order
of an element of ~SS5 (see Remark 4). By the Berman–Higman result we can assume
that e1ðuÞ ¼ 0 and ezðuÞ ¼ 0. Further, we can assume that the order of u is even, since
otherwise rational conjugacy of u to an element of G follows from the validity
of (ZC1) for S5 and [13, Theorem 2.2]. Denote the partial augmentations of u by
e1a; e5a; . . . ; e12b (so that e5a, for example, denotes the partial augmentation of u with
respect to the conjugacy class of elements of order 5). So e1a ¼ e2a ¼ 0. Since all but
one of the partial augmentations of pðuÞ, the image of u in ZS5, vanish, and a partial
augmentation of pðuÞ is the sum of the partial augmentations of u taken for classes
which fuse in S5, we have

e4a; e4b; e8a þ e8b; e3a þ e6a; e5a þ e10a; e12a þ e12b A f0; 1g;

je4ajþ je4bjþ je8a þ e8bjþ je3a þ e6ajþ je5a þ e10ajþ je12a þ e12bj ¼ 1:
ð1Þ

Suppose that u has order 2 or 4. Then the partial augmentations of u which are pos-
sibly non-zero are e4a, e4b, e8a and e8b (by Remark 5). Thus

w11ðuÞ ¼ aðe8a $ e8bÞ ¼ $
ffiffiffi
2

p
ðe8a $ e8bÞ:

Also, w11ðuÞ is a sum of fourth roots of unity. Since
ffiffiffi
2

p
B QðiÞ it follows that

e8a $ e8b ¼ 0. Using e8a þ e8b A f0; 1g from (1) we obtain e8a ¼ e8b ¼ 0. Now
je4ajþ je4bj ¼ 1 by (1), and so all but one of the partial augmentations of u vanish,
with either e4a ¼ 1 or e4b ¼ 1. It follows that u is rationally conjugate to an element of
G (necessarily of order 4).

Suppose that u has order 6 or 10. Then u3 ¼ z or u5 ¼ z, respectively (by Remark 4),
i.e., zu is of order 3 or 5. Thus zu is, as already noted, rationally conjugate to an
element of G, and hence the same holds for u itself.

Suppose that u has order 12. Then the partial augmentations of u which are pos-
sibly non-zero are e4a, e4b, e8a, e8b, e3a, e6a, e12a and e12b. The unit pðuÞ has order 6
(by Remark 5), so that e12a þ e12b ¼ 1 and e4a ¼ e4b ¼ e8a þ e8b ¼ e3a þ e6a ¼ 0 by
(1). Now w11ðuÞ ¼ $

ffiffiffi
2

p
ðe8a $ e8bÞ but

ffiffiffi
2

p
B Qðz12Þ ¼ Qði; z3Þ, so that e8a ¼ e8b and

consequently e8a ¼ e8b ¼ 0. Further w5ðuÞ ¼ 2ðe6a $ e3aÞ ¼ 4e6a ¼ e6aw5ð1Þ, and so
if e6a 0 0 then u is mapped under a representation of G a¤ording w5 to the
identity matrix or the negative of the identity matrix, leading to the contradiction
w5ð1Þ ¼ w5ðu6Þ ¼ w5ðzÞ ¼ $4. Thus e3a ¼ e6a ¼ 0. So far, we have shown that e12a and
e12b are the only possibly non-vanishing partial augmentations of u. We continue with
a formal application of the Luthar–Passi method. Let x be a 12th root of unity. Then

mðx; u; w6Þ ¼ 1
12 ðTrQðz12Þ=Qðw6ðuÞx

$1Þ þ 6mðx2; u2; w6Þ þ TrQðz312Þ=Q
ðw6ðu3Þx$3ÞÞ:

Since u3 is rationally conjugate to an element of order 4 in G, we have w6ðu3Þ ¼ 0.
Since w6ðuÞ ¼ bðe12a $ e12bÞ ¼ ðz712 $ z1112Þðe12a $ e12bÞ, we have
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TrQðz12Þ=Qðw6ðuÞz
$7
12 Þ ¼ 6ðe12a $ e12bÞ;

TrQðz12Þ=Qðw6ðuÞz
$11
12 Þ ¼ $6ðe12a $ e12bÞ:

Next, w6ðu4Þ ¼ 1 since u4 is rationally conjugate to an element of order 3 in G, and
w6ðu6Þ ¼ w6ðzÞ ¼ $4, from which it is easy to see that mðx2; u2; w6Þ ¼ 1 for a primitive
12th root of unity x. Thus

mðz712; u; w6Þ ¼ 1
2 ððe12a $ e12bÞ þ 1Þd 0;

mðz1112 ; u; w6Þ ¼ 1
2 ð$ðe12a $ e12bÞ þ 1Þd 0;

from which we obtain je12a $ e12bjc 1. Together with e12a þ e12b ¼ 1 this implies that
e12a ¼ 0 or e12b ¼ 0. We have shown that all but one of the partial augmentations of u
vanish.

Suppose that u has order 8. Then the partial augmentations of u which are possibly
non-zero are e4a, e4b, e8a and e8b. Since pðuÞ has order 4, its partial augmentations
with respect to classes of elements of order 2 vanish and consequently e4a ¼ e4b ¼ 0.
We have w11ðuÞ ¼ aðe8a $ e8bÞ ¼ ð$z8 þ z38Þðe8a $ e8bÞ, and this time the Luthar–
Passi method gives

mðz38 ; u; w11Þ ¼ 1
2 ððe8a $ e8bÞ þ 3Þd 0;

mðz8; u; w11Þ ¼ 1
2 ð$ðe8a $ e8bÞ þ 3Þd 0;

from which we obtain je8a $ e8bjc 3. Together with e8a þ e8b ¼ 1 this implies that
ðe8a; e8bÞ A fð1; 0Þ; ð0; 1Þ; ð$1; 2Þ; ð2;$1Þg. At this point we are stuck when limiting
attention to complex characters only.
However, we may resort to p-modular characters. Examining Brauer characters of

small degree seems most promising. Thus it is natural to choose p ¼ 5 since ~SS5 is a
subgroup of SLð2; 25Þ. This can be seen as follows. The group PSLð2; 25Þ contains
PGLð2; 5Þ as a subgroup (see [20, Kapitel II, 8.27 Hauptsatz]) which is isomorphic
to S5, and its pre-image in SLð2; 25Þ is isomorphic to ~SS5 (since the Sylow 2-subgroups
of SLð2; 25Þ are generalized quaternion groups). Let j be the Brauer character af-
forded by a faithful representation D : ~SS5 ! SLð2; 25Þ. The Brauer lift can be chosen
such that jðxÞ ¼ a ¼ $z8 þ z38 for an element x in the conjugacy class 8a of G
(since DðxÞ has determinant 1). Class 8b is represented by x5, and so we obtain
jðuÞ ¼ e8ajðxÞ þ e8bjðx5Þ ¼ ð$z8 þ z38Þðe8a $ e8bÞ. Since jðuÞ is the sum of two 8th
roots of unity, it follows that je8a $ e8bjc 1 and consequently e8a ¼ 0 or e8b ¼ 0. The
proof is complete.

Remark 7. The spin characters of ~SS5 form a single 5-block of defect 1, with Brauer
tree

(
w6

j4a (
w11

j2a (
w5

j2b (
w12

j4b (
w7
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(cf. [26, Theorem 4]). Above, we have chosen j ¼ j2a (representations a¤ording j2a
and j2b are conjugate under the Frobenius homomorphism). Since we had to exam-
ine the character value w11ðuÞ, it was certainly a good choice to further consider a
modular constituent of w11.

One may dare to ask whether the theory of cyclic blocks can provide additional
insight into Zassenhaus’ conjecture (ZC1). We have no opinion on this, but we di-
gress into a brief discussion of another conjecture of Zassenhaus, (ZCAut), where this
is actually the case. (ZCAut) asserts that the group AutnðZGÞ of augmentation
preserving automorphisms of ZG is generated by automorphisms of G and central
automorphisms; though not valid in general, it may very well be valid for simple
groups G. The main point here is that AutnðZGÞ acts on various structures associated
with ZG. For one thing, ring automorphisms give rise to autoequivalences of module
categories. In [5], rigidity of autoequivalences of the module category of a Brauer tree
algebra was studied, with first applications to (ZCAut) for simple groups. For an-
other thing, AutnðZGÞ acts on the class sums of ZG. This immediately shows that the
action on characters—both ordinary and modular—is compatible with taking tensor
products; see [3], and [4] for a thorough examination of the consequences resulting
for (ZCAut).

4 The general linear group GL(2, 5)

We set G ¼ GLð2; 5Þ. Let z be a generator of ZðGÞ, which is a cyclic group of order
4. The quotient G=hzi is isomorphic to S5, for which (ZC1) is known to hold. Let p
denote the natural map ZG ! ZG=hzi.

Let u be a non-trivial torsion unit in VðZGÞ. We will show that all but one of its
partial augmentations vanish. For this, we use part of the character table of G,
shown in Table 2 in the form obtained by requiring CharacterTable(‘‘GL25’’) in
GAP [16], together with the natural 2-dimensional representation of G in character-
istic 5. In Table 2, the row labelled ‘in S5’ indicates to which classes in the quotient S5

1a 4c 2b 4d 4e 4f 4g 24a 12a 8a 6a 24b 3a 8b 24c 12b 24dclass
in S5 1a 4a 2a 4a 4a 2a 4a 6a 3a 2b 3a 6a 3a 2b 6a 3a 6a

w2 1 i $1 $i $i 1 i i $1 $i 1 $i 1 i i $1 $i
w6 5 i $1 $i $i 1 i $i 1 i $1 i $1 $i $i 1 i
w16 4 . . . . . . $i $1 $2i 1 i 1 2i $i $1 i
w9 6 a . a $a . $a . . . . . . . . . .
w14 6 $a . $a a . a . . . . . . . . . .
w15 4 . . . . . . b $i . $1 $b 1 . $b i b
w21 4 . . . . . . . 2i . 2 . $2 . . $2i .
w22 4 . . . . . . $b $i . $1 b 1 . b i $b

Irrational entries: a ¼ 1þ i, b ¼ $zþ z17 where z ¼ expð2pi=24Þ.

Table 2. Part of the character table of GLð2; 5Þ
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the listed classes of G are mapped. The classes omitted are the classes 2a, 4a, 4b of
central 2-elements, and the classes 5a, 20a, 10a, 20b of elements of order divisible
by 5.
The characters w6 and w16 have kernel hz

2i. The faithful characters w9, w14, w15, w21
and w22 of G form a 5-block of G, with Brauer tree

(
w15

j4a (
w9

j2a (
w21

j2b (
w14

j4b (
w22

(cf. the theory of blocks of cyclic defect). Set j ¼ j4a ¼ ðw15 $ w9ÞjG5 0
(restriction to

5-regular elements). Then j is an irreducible 5-modular Brauer character of G of de-
gree 2 a¤orded by a natural representation G ! GLð2; 5Þ.
We remark that the remaining irreducible faithful characters of G form a 5-block

of G which is algebraically conjugate to the one that we consider.
We write e4c; e2b; . . . ; e24d for the partial augmentations of u at the classes listed in

Table 2. We assume that u is not a central unit, so that its partial augmentations at
central group elements are zero. It follows from Remark 4, and the validity of (ZC1)
for S5, that the order of u agrees with the order of some group element of G.

Suppose that the order of u is divisible by 5. Then pðuÞ has order 5, by Remark 4, and
u is the product of a unit of order 5 and a central group element of G. Since there is
only one class of elements of order 5 in G, the 5-part of u is rationally conjugate to an
element of G (by Remark 5), and thus the same is valid for u.

Suppose that u has order 2. The group G has only one class of non-central elements of
order 2, and so Remark 5 applies.

Suppose that u has order 4. Then egðuÞ ¼ 0 for a group element g which is not a non-
central element of order 2 or 4 (by Remark 5). Evaluating the Brauer character j at u
gives

jðuÞ ¼ ðe4c $ e4gÞð1þ iÞ þ ðe4d $ e4eÞð1$ iÞ: ð2Þ

First, suppose that pðuÞ has order 2. Then u2 ¼ z2 (by Remark 4), and so
jðu2Þ ¼ $2 and jðuÞ is the sum of two primitive fourth roots of unity. These roots of
unity are distinct since u is non-central in ZG. Thus jðuÞ ¼ i þ ð$iÞ ¼ 0 and (2) gives
e4c ¼ e4g and e4d ¼ e4e. Since (ZC1) holds for S5 we have

e4c þ e4g þ e4d þ e4e ¼ 0; e2b þ e4f ¼ 1:

From this we further obtain e4d ¼ $e4c and w2ðuÞ ¼ 1$ 2e2b þ 4e4ci. Since jw2ðuÞj ¼ 1
it follows that e4c ¼ 0 and e2b A f0; 1g. Thus all but one of the partial augmentations
of u vanish.
Secondly, suppose that pðuÞ has order 4. Then jðu2Þ0$2. Since jðuÞ is

the sum of two distinct fourth roots of unity we have jjðuÞj < 2. Thus
jðuÞ A fGð1þ iÞ;Gð1$ iÞg by (2). Since (ZC1) holds for S5 we have
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e4c þ e4g þ e4d þ e4e ¼ 1; e2b þ e4f ¼ 0:

From this and (2) we further obtain that for some a A Z and di A f0; 1g, with exactly
one di non-zero, e4c ¼ aþ d1, e4g ¼ aþ d2, e4c ¼ a$ d3 and e4g ¼ a$ d4. Thus
w2ðuÞ ¼ ðd1 þ d2 $ d3 $ d4Þi $ 2e2b þ 4ai, from which e2b ¼ 0 and a ¼ 0 follows. Thus
all but one of the partial augmentations of u vanish.

Suppose that u has order 8. Then e8a 0 0 or e8b 0 0 by [12, Corollary 4.1] (an obser-
vation sometimes attributed to Zassenhaus; cf. [30, Lemma 3]).

Suppose that e8b ¼ $e8a. Then w16ðuÞ ¼ $4e8bi (remember Remark 5). Since w16
has degree 4 it follows that je8aj ¼ je8bj ¼ 1. The class 8a is the only class consisting of
elements whose square is in 4a, the class consisting of one of the central elements of
order 4. Also 8b is the only class consisting of elements whose square is in 4b. Thus
e4aðu2Þ0 0 and e4bðu2Þ0 0 by Remark 6. But we already know that u2 is rationally
conjugate to a group element, and so we have reached a contradiction.

Hence e8a þ e8b 0 0, and since e8a and e8b are the classes of G which map onto class
e2b in S5, in fact e8a þ e8b ¼ 1. Now w16ðuÞ ¼ 2ð1$ 2e8aÞi, and jw16ðuÞjc 4 implies
that e8a A f0; 1g, so that one of e8a and e8b vanishes.

Next, we show that w9ðuÞ ¼ 0. Since S5 has no elements of order 8 we have u4 ¼ z2

by Remark 4. From w9ðu4Þ ¼ w9ðz2Þ ¼ $w9ð1Þ we conclude that w9ðuÞ A z8Z½i' for
a primitive 8th root of unity z8, and inspection of the character table shows that
w9ðuÞ A Z½i'. But definitely z8 B Z½i', and so w9ðuÞ ¼ 0.

Since

w9ðuÞ ¼ ðe4c $ e4gÞð1þ iÞ þ ðe4d $ e4eÞð1$ iÞ ð3Þ

and e4c þ e4g þ e4d þ e4e ¼ 0, it follows that e4c ¼ e4g ¼ $e4d ¼ $e4e. Also we have
e2b þ e4f ¼ 0. So w2ðuÞ ¼ ðG1þ 4e4cÞi $ 2e2b, which implies e2b ¼ 0 and e4c ¼ 0, and
we are done.

Suppose that u has order 3. The group G has only one class of elements of order 3,
and so Remark 5 applies.

Suppose that u has order 6. The only partial augmentations of u which are possibly
non-zero are e2b, e3a and e6a. Since the class e6a maps in S5 to the class of elements of
order 3 it follows that pðuÞ is rationally conjugate to a group element of order 3 in S5.
Hence u is the product of z2 and a unit of order 3 (by Remark 4), and u is rationally
conjugate to a group element.

Suppose that u has order 12. Then the only partial augmentations of u which are
possibly non-zero are at classes of elements of order 2, 4, 3, 6 and 12. The classes of
elements of order 3, 6 and 12 map in S5 to the class of elements of order 3. Thus pðuÞ
is of order 3 and u is the product of z and a unit of order 3, so that u is rationally
conjugate to a group element.
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Suppose that u has order 24. Then pðuÞ is rationally conjugate to an element of order
6 in S5, and so

e24a þ e24b þ e24c þ e24d ¼ 1;

e12a þ e6a þ e3a þ e12b ¼ 0;

e8a þ e8b ¼ 0;

e4c þ e4d þ e4e þ e4g ¼ 0;

e2b þ e4f ¼ 0:

ð4Þ

From w9ðu12Þ ¼ $w9ð1Þ we conclude that w9ðuÞ A z8Z½i; z3' for a primitive 8th root
of unity z8 and a primitive cube root of unity z3. Inspection of the character table
shows that w9ðuÞ A Z½i', and so w9ðuÞ ¼ 0 as z8 B Z½i; z3'. In the same way we argue
that w21ðuÞ ¼ 0. Thus evaluation (3) of w9ðuÞ is zero, and with (4) it follows that
e4c ¼ e4g ¼ $e4d ¼ $e4e. Now ðw2 þ w6ÞðuÞ ¼ $4e2a þ 8e4ci. Since w2 þ w6 has degree
6 we conclude that e4c ¼ 0.
We have 0 ¼ w21ðuÞ ¼ 2ðe6a $ e3aÞ þ 2iðe12a $ e12bÞ, and therefore e6a ¼ e3a and

e12a ¼ e12b. Further e6a ¼ $e12a from (4). Thus w16ðuÞ A $4e12a þ iZ. From
w16ðu6Þ ¼ $w16ð1Þ we obtain w16ðuÞ A iZ½z3'. It follows that $4e12ai A Z½z3' and
e12a ¼ 0. Now w2ðuÞ A $2e2b þ iZ and so e2b ¼ 0. Also ðw2 þ w16ÞðuÞ ¼ $2e2b $ 6e8ai
and since w2 þ w16 has degree 5 we have e8a ¼ 0.
Set a ¼ e24a þ e24c and b ¼ e24b þ e24d. Then w2ðuÞ ¼ ða$ bÞi and thus a$ b ¼G1.

Together with aþ b ¼ 1 this implies that ða; bÞ ¼ ð1; 0Þ or ða; bÞ ¼ ð0; 1Þ. In the first
case, w15ðuÞ ¼ ð2e24a $ 1Þb $ 2e24bb, and in the second w15ðuÞ ¼ 2e24ab þ ð1$ 2e24bÞb.
Using the sum formula for sin with p

12 ¼
p
3 $

p
4 it is easiest to calculate

b ¼ $
ffiffi
3
2

q
ð1þ iÞ. In particular, jbj ¼

ffiffiffi
3

p
. Since w15ðuÞ is the sum of four roots of

unity, it is readily seen that if w15ðuÞ assumes the first value, then e24b ¼ 0 and
e24a A f0; 1g, and if w15ðuÞ assumes the second value, then e24a ¼ 0 and e24b A f0; 1g. It
follows that exactly one of e24a, e24c, e24b and e24d is non-zero, and we are done.
The observant reader might have noticed that the last argument can be replaced by

a simpler ‘modular’ argument: we already know that w15ðuÞ agrees with the value of
w15 at a class of elements of order 24 since w9ðuÞ ¼ 0 and j ¼ w9 $ w15 on 5-regular
elements.

Acknowledgement. We are grateful to the referee for pointing out to us a gap in one
of our calculations in the original version of this paper.
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