54 research outputs found

    A new open-source PEMFC simulation tool for easy assessment of material parameterizations

    Get PDF
    After almost three decades of PEM fuel cell modelling, there is a large need for standardization and establishment of a common basis in the development of PEMFC models, not only for numerical simulation purposes, but also to test and validate MEA material parameterizations from experimental measurements. Until recently, there were only two open-source codes capable of simulating the state of the art in PEMFC modeling at the scale of single cells or MEAs: OpenFCST, a rather heavy FEM package consisting of more than 120 000 lines of C++ code (not counting library dependencies), and FAST-FC, a finite volume tool built on top of OpenFOAM, consisting of about 12 000 lines of code (not counting the required OpenFOAM). Albeit highly capable, these tools require significant effort and programming know-how to be set up and modified, and they are not well suited for easy substitution of material parameterizations or extensive parameter studies in sufficiently short computation times. We have recently developed the first open standalone MATLAB implementation of a full-blown, steady-state, non-isothermal, macro-homogeneous two-phase MEA model for low-temperature PEM fuel cells. It implements the most dominant through-plane transport processes in a 5-layer membrane electrode assembly: the transport of charge, energy, gas species and water. With a focus on code simplicity, compactness, portability, transparency, accessibility and free availability, our program is an ideal candidate for the assessment of new material parameterizations that may originate e.g. from experimental data. Thanks to the very short runtime of just a few seconds on an ordinary PC, extensive parameter studies and quick substitution of modeling assumptions or material properties are now possible with our tool without requiring deep programming knowledge or compilation of large software libraries. We demonstrate how the program may be used to quantitatively understand and evaluate PEM fuel cell material properties or measurement data

    Experimental parameter uncertainty in PEM fuel cell modeling. Part II: Sensitivity analysis and importance ranking

    Get PDF
    Numerical modeling of proton exchange membrane fuel cells is at the verge of becoming predictive. A crucial requisite for this, though, is that material properties of the membrane-electrode assembly and their functional dependence on the conditions of operation are known with high precision. In this bipartite paper series we determine the most critical transport parameters for which accurate experimental characterization is required in order to enable the simulation of fuel cell operation with sufficient confidence from small to large current densities. In Part II, we employ the two-phase model developed in Part I to carry out extensive forward uncertainty propagation analyses. These include the study of local parameter sensitivity in the vicinity of a baseline parameter set, and a global sensitivity analysis in which a broad range of operating conditions and material properties is covered. A comprehensive ranking list of model parameters is presented, sorted by impact on predicted fuel cell properties such as the current-voltage characteristics and water balance. The top five in this list are, in this order: The membrane hydration isotherm, the electro-osmotic drag coefficient, the membrane thickness, the water diffusivity in the ionomer and its ionic conductivity.Comment: 9 pages, 5 figures, 4 table

    Free open reference implementation of a two-phase PEM fuel cell model

    Get PDF
    In almost 30 years of PEM fuel cell modeling, countless numerical models have been developed in science and industrial applications, almost none of which have been fully disclosed to the public. There is a large need for standardization and establishing a common ground not only in experimental characterization of fuel cells, but also in the development of simulation codes, to prevent each research group from having to start anew from scratch. Here, we publish the first open standalone implementation of a full-blown, steady-state, non-isothermal two-phase model for low-temperature PEM fuel cells. It is based on macro-homogeneous modeling approaches and implements the most essential through-plane transport processes in a five-layer MEA. The focus is on code simplicity and compactness with only a few hundred lines of clearly readable code, providing a starting point for more complex model development. The model is implemented as a standalone MATLAB function, based on MATLAB's standard boundary value problem solver. The default simulation setup reflects wide-spread commercially available MEA materials. Operating conditions recommended for automotive applications by the European Commission are used to establish new fuel cell simulation base data, making our program a valuable candidate for model comparison, validation and benchmarking.Comment: 13 pages, 7 figures, 7 table

    Experimental parameter uncertainty in PEM fuel cell modeling. Part I: Scatter in material parameterization

    Get PDF
    Ever since modeling has become a mature part of proton exchange membrane fuel cell (PEMFC) research and development, it has been plagued by significant uncertainty lying in the detailed knowledge of material properties required. Experimental data published on several transport coefficients are scattered over orders of magnitude, even for the most extensively studied materials such as Nafion membranes, for instance. For PEMFC performance models to become predictive, high-quality input data is essential. In this bipartite paper series, we determine the most critical transport parameters for which accurate experimental characterization is required in order to enable performance prediction with sufficient confidence from small to large current densities. In the first part, a macro-homogeneous two-phase membrane-electrode assembly model is furnished with a comprehensive set of material parameterizations from the experimental and modeling literature. The computational model is applied to demonstrate the large spread in performance prediction resulting from experimentally measured or validated material parameterizations alone. The result of this is a ranking list of material properties, sorted by induced spread in the fuel cell performance curve. The three most influential parameters in this list stem from membrane properties: The Fickean diffusivity of dissolved water, the protonic conductivity and the electro-osmotic drag coefficient.Comment: 19 pages, 8 figures, 10 table

    Calculation of the Energy Band Diagram of a Photoelectrochemical Water Splitting Cell

    Get PDF
    A physical model is presented for the semiconductor electrode of a photoelectrochemical cell. The model accounts for the potential drop in the Helmholtz layer and thus enables description of both band edge pinning and unpinning. The model is based on the continuity equations for charge carriers and direct charge transfer from the energy bands to the electrolyte. A quantitative calculation of the position of the energy bands and the variation of the quasi-Fermi levels in the semiconductor with respect to the water reduction and oxidation potentials are presented. Calculated photocurrent–voltage curves are compared with established analytical models and experimental data. Our model calculations are suitable to enhance understanding and improve the properties of semiconductors for photoelectrochemical water splitting

    Exploring the thermodynamics of the bromine electrode in concentrated solutions for improved parametrisation of hydrogen-bromine flow battery models

    Get PDF
    Thermodynamic properties of the bromine electrode in an exemplary hydrogen–bromine flow battery (HBFB) are investigated in detail. Open-circuit potential (OCP) measurements of HBRB electrolytes in a liquid junction-free setup and electrolyte Raman spectra are employed to estimate polybromides speciation. An improved mathematical description of the bromine electrode OCP versus state of charge is provided. This paper addresses the phenomenon of polybromides formation at concentrations up to 7.7 mol L-1 HBr and 3.85 mol L-1 Br2 and their significant impact on the OCP. The model takes into account tri-, penta- and heptabromides formation, precisely modelled electrolyte activity coefficients (up to 11-molal HBr), electrolyte density, and temperature. It is elucidated that the polybromide formation constants found in literature treating dilute electrolytes are substantially too low. Newly determined equilibrium constants, applicable over a wider concentration range are provided for 25 and 43 °C together with their standard enthalpy changes. The model is successfully validated in an independent experiment using a real, pilot-scale HBFB. It is concluded that the usage of a simple Nernst-like equation to calculate the OCP of flow battery electrodes containing concentrated electrolytes leads to erroneous results

    Exploring the thermodynamics of the bromine electrode in concentrated solutions for improved parametrisation of hydrogen–bromine flow battery models

    Get PDF
    Thermodynamic properties of the bromine electrode in an exemplary hydrogen–bromine flow battery (HBFB) are investigated in detail. Open-circuit potential (OCP) measurements of HBRB electrolytes in a liquid junctionfree setup and electrolyte Raman spectra are employed to estimate polybromides speciation. An improved mathematical description of the bromine electrode OCP versus state of charge is provided. This paper addresses the phenomenon of polybromides formation at concentrations up to 7.7 mol L-1 HBr and 3.85 mol L-1 Br2 and their significant impact on the OCP. The model takes into account tri-, penta- and heptabromides formation, precisely modelled electrolyte activity coefficients (up to 11-molal HBr), electrolyte density, and temperature. It is elucidated that the polybromide formation constants found in literature treating dilute electrolytes are substantially too low. Newly determined equilibrium constants, applicable over a wider concentration range are provided for 25 and 43 ◦C together with their standard enthalpy changes. The model is successfully validated in an independent experiment using a real, pilot-scale HBFB. It is concluded that the usage of a simple Nernst-like equation to calculate the OCP of flow battery electrodes containing concentrated electrolytes leads to erroneous results

    Charge Transfer-Induced Lattice Collapse in Ni-Rich NCM Cathode Materials during Delithiation

    Get PDF
    Ni-rich LiNixCoyMnzO2 (NCM) cathode materials have great potential for application in next-generation lithium-ion batteries owing to their high specific capacity. However, they are subjected to severe structural changes upon (de)lithiation, which adversely affects the cycling stability. Herein, we investigate changes in crystal and electronic structure of NCM811 (80% Ni) at high states of charge by a combination of operando X-ray diffraction (XRD), operando hard X-ray absorption spectroscopy (hXAS), ex situ soft X-ray absorption spectroscopy (sXAS), and density functional theory (DFT) calculations, and correlate the results with data from galvanostatic cycling in coin cells. XRD reveals a large decrease in unit cell volume from 101.38(1) Å3 to 94.26(2) Å3 due to collapse of the interlayer spacing when x(Li) < 0.5 (decrease in c-axis from 14.469(1) Å at x(Li) = 0.6 to 13.732(2) Å at x(Li) = 0.25). hXAS shows that the shrinkage of the transition metal-oxygen layer mainly originates from nickel oxidation. sXAS, together with DFT-based Bader charge analysis, indicates that the shrinkage of the interlayer, which is occupied by lithium, is induced by charge transfer between O 2p and partially filled Ni eg orbitals (resulting in decrease of oxygen-oxygen repulsion). Overall, the results demonstrate that high-voltage operation of NCM811 cathodes is inevitably accompanied by charge transfer-induced lattice collapse

    Inhibition of HERG1 K+ channel protein expression decreases cell proliferation of human small cell lung cancer cells

    Get PDF
    HERG (human ether-à-go-go-related gene) K+ currents fulfill important ionic functions in cardiac and other excitable cells. In addition, HERG channels influence cell growth and migration in various types of tumor cells. The mechanisms underlying these functions are still not resolved. Here, we investigated the role of HERG channels for cell growth in a cell line (SW2) derived from small cell lung cancer (SCLC), a malignant variant of lung cancer. The two HERG1 isoforms (HERG1a, HERG1b) as well as HERG2 and HERG3 are expressed in SW2 cells. Inhibition of HERG currents by acute or sustained application of E-4031, a specific ERG channel blocker, depolarized SW2 cells by 10–15 mV. This result indicated that HERG K+ conductance contributes considerably to the maintenance of the resting potential of about −45 mV. Blockage of HERG channels by E-4031 for up to 72 h did not affect cell proliferation. In contrast, siRNA-induced inhibition of HERG1 protein expression decreased cell proliferation by about 50%. Reduction of HERG1 protein expression was confirmed by Western blots. HERG current was almost absent in SW2 cells transfected with siRNA against HERG1. Qualitatively similar results were obtained in three other SCLC cell lines (OH1, OH3, H82), suggesting that the HERG1 channel protein is involved in SCLC cell growth, whereas the ion-conducting function of HERG1 seems not to be important for cell growth
    corecore