4,633 research outputs found
Ideal CdTe/HgTe superlattices
In this paper we consider a new superlattice system consisting of alternating layers of CdTe and HgTe constructed parallel to the (001) zincblende plane. The tightâbinding method is used to calculate the electronic properties of this system, in particular, band edge and interface properties. The energy gap as a function of layer thickness is determined. It is found to decrease monotonically with increasing HgTe layer thickness for a fixed ratio of CdTe to HgTe layer thicknesses. The symmetry of the valence band maximum state is found to change at certain HgTe layer thicknesses. This is explained by relating the superlattice states to bulk CdTe and HgTe states. The existence of interface states is investigated for the superlattice with 12 layers of CdTe alternating with 12 of HgTe. Interface states are found near the boundaries of the Brillouin zone, but none are found in the band gap
Tightâbinding calculation for the AlAsâGaAs (100) interface
We report the results of a study of the electronic properties of the AlAsâGaAs interface using the tightâbinding method. The tightâbinding matrix for the superlattice system is used in the limit in which the thickness of the repeated superlattice slab becomes large. This system is studied in detail with special emphasis placed on the determination of interface states. No interface states with energies within the GaAs forbidden gap are found. The densities of states per layer are calculated and compared with bulk densities of states. They resemble the bulk densities of states except for layers adjacent to the interface
Localization of superlattice electronic states and complex bulk band structures
The relative lineup of the band structures of the two constituents of a semiconductor superlattice can cause charge carriers to be confined. This occurs when the energy of a superlattice state is located in an allowed energy region of one of the constituents (the "well" semiconductor), but in the band gap of the other (the "barrier" semiconductor). A charge carrier will tend to be confined in the layers made from the semiconductor with the allowed region at that energy. It will have an exponentially decaying amplitude to be found in the
semiconductor with a band gap at that energy
Passage-time distributions from a spin-boson detector model
The passage-time distribution for a spread-out quantum particle to traverse a
specific region is calculated using a detailed quantum model for the detector
involved. That model, developed and investigated in earlier works, is based on
the detected particle's enhancement of the coupling between a collection of
spins (in a metastable state) and their environment. We treat the continuum
limit of the model, under the assumption of the Markov property, and calculate
the particle state immediately after the first detection. An explicit example
with 15 boson modes shows excellent agreement between the discrete model and
the continuum limit. Analytical expressions for the passage-time distribution
as well as numerical examples are presented. The precision of the measurement
scheme is estimated and its optimization discussed. For slow particles, the
precision goes like , which improves previous estimates,
obtained with a quantum clock model.Comment: 11 pages, 6 figures; minor changes, references corrected; accepted
for publication in Phys. Rev.
Relative momentum for identical particles
Possible definitions for the relative momentum of identical particles are
considered
Transport mechanism through metal-cobaltite interfaces
The resistive switching (RS) properties as a function of temperature were
studied for Ag/LaSrCoO (LSCO) interfaces. The LSCO is a
fully-relaxed 100 nm film grown by metal organic deposition on a LaAlO
substrate. Both low and a high resistance states were set at room temperature
and the temperature dependence of their current-voltage (IV) characteristics
was mea- sured taking care to avoid a significant change of the resistance
state. The obtained non-trivial IV curves of each state were well reproduced by
a circuit model which includes a Poole-Frenkel element and two ohmic
resistances. A microscopic description of the changes produced by the RS is
given, which enables to envision a picture of the interface as an area where
conductive and insulating phases are mixed, producing Maxwell-Wagner
contributions to the dielectric properties.Comment: 13 pages, 5 figures, to be published in APL. Corresponding author: C.
Acha ([email protected]
Positional Advantage: Factors Behind the Uneven Geographic Distribution of Top Chess Players
This paper seeks to explore the reason behind the uneven geographic distribution of top chess grandmasters. FIDE rating data, country data, and survey data given to chess grandmasters are gathered to determine the validity of the hypothesis: That the two main influences in whether a country has a higher or lower number (and percentage) of top grandmasters are chess culture and federation/government support. The research tests the correlation between several variables and explores whether or not there is quantitative and qualitative support for this assumption. Individual studies in the latter end of this paper explore the countries on a case-by-case basis to explore the factors that arenât immediately visible when observing the data alon
Semiclassical scalar propagators in curved backgrounds: formalism and ambiguities
The phenomenology of quantum systems in curved space-times is among the most
fascinating fields of physics, allowing --often at the gedankenexperiment
level-- constraints on tentative theories of quantum gravity. Determining the
dynamics of fields in curved backgrounds remains however a complicated task
because of the highly intricate partial differential equations involved,
especially when the space metric exhibits no symmetry. In this article, we
provide --in a pedagogical way-- a general formalism to determine this dynamics
at the semiclassical order. To this purpose, a generic expression for the
semiclassical propagator is computed and the equation of motion for the
probability four-current is derived. Those results underline a direct analogy
between the computation of the propagator in general relativistic quantum
mechanics and the computation of the propagator for stationary systems in
non-relativistic quantum mechanics. A possible application of this formalism to
curvature-induced quantum interferences is also discussed.Comment: New materials on gravitationally-induced quantum interferences has
been adde
A switch element in the autophagy E2 Atg3 mediates allosteric regulation across the lipidation cascade
Autophagy depends on the E2 enzyme, Atg3, functioning in a conserved E1-E2-E3 trienzyme cascade that catalyzes lipidation of Atg8-family ubiquitin-like proteins (UBLs). Molecular mechanisms underlying Atg8 lipidation remain poorly understood despite association of Atg3, the E1 Atg7, and the composite E3 Atg12-Atg5-Atg16 with pathologies including cancers, infections and neurodegeneration. Here, studying yeast enzymes, we report that an Atg3 element we term E123IR (E1, E2, and E3-interacting region) is an allosteric switch. NMR, biochemical, crystallographic and genetic data collectively indicate that in the absence of the enzymatic cascade, the Atg3(E123IR) makes intramolecular interactions restraining Atg3's catalytic loop, while E1 and E3 enzymes directly remove this brace to conformationally activate Atg3 and elicit Atg8 lipidation in vitro and in vivo. We propose that Atg3's E123IR protects the E2 similar to UBL thioester bond from wayward reactivity toward errant nucleophiles, while Atg8 lipidation cascade enzymes induce E2 active site remodeling through an unprecedented mechanism to drive autophagy
- âŠ