The passage-time distribution for a spread-out quantum particle to traverse a
specific region is calculated using a detailed quantum model for the detector
involved. That model, developed and investigated in earlier works, is based on
the detected particle's enhancement of the coupling between a collection of
spins (in a metastable state) and their environment. We treat the continuum
limit of the model, under the assumption of the Markov property, and calculate
the particle state immediately after the first detection. An explicit example
with 15 boson modes shows excellent agreement between the discrete model and
the continuum limit. Analytical expressions for the passage-time distribution
as well as numerical examples are presented. The precision of the measurement
scheme is estimated and its optimization discussed. For slow particles, the
precision goes like E−3/4, which improves previous E−1 estimates,
obtained with a quantum clock model.Comment: 11 pages, 6 figures; minor changes, references corrected; accepted
for publication in Phys. Rev.